Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (6): 1495-1506     CSTR: 32134.14.1005.4537.2024.028      DOI: 10.11902/1005.4537.2024.028
  研究报告 本期目录 | 过刊浏览 |
同成分的超细贝氏体钢和Q&P钢在海水中应力腐蚀开裂行为对比研究
苏志诚, 张弦(), 程焱, 刘静, 吴开明
武汉科技大学 冶金工业过程系统科学湖北省重点实验室 耐火材料与冶金省部共建国家重点实验室 高性能钢铁材料及其应用省部共建协同创新中心 武汉 430081
Comparative Study on Stress Corrosion Cracking Behavior of Ultrafine Bainitic Steel and Q&P Steel with Same Composition in Seawater
SU Zhicheng, ZHANG Xian(), CHENG Yan, LIU Jing, WU Kaiming
Hubei Province Key Laboratory of Systems Science in Metallurgical Process, State Key Laboratory of Refractory Material and Metallurgy, Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan 430081, China
引用本文:

苏志诚, 张弦, 程焱, 刘静, 吴开明. 同成分的超细贝氏体钢和Q&P钢在海水中应力腐蚀开裂行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
Zhicheng SU, Xian ZHANG, Yan CHENG, Jing LIU, Kaiming WU. Comparative Study on Stress Corrosion Cracking Behavior of Ultrafine Bainitic Steel and Q&P Steel with Same Composition in Seawater[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1495-1506.

全文: PDF(19687 KB)   HTML
摘要: 

采用显微表征方法(SEM、XRD、EBSD),电化学测试和慢应变速率应力腐蚀实验,研究了两种不同热处理工艺的先进高强度钢(超细贝氏体钢、Q&P钢)在海洋环境中的应力腐蚀开裂行为。结果表明,采用等温工艺的超细贝氏体钢中贝氏体铁素体板条细化,出现了较多的薄膜状残余奥氏体,获得了较高的强度与延伸率。贝氏体铁素体板条与残余奥氏体形成微电偶效应,贝氏体铁素体电位较低作为阳极发生溶解,活性溶解位点诱发裂纹的萌生与扩展。此外,超细贝氏体钢中晶粒较细,塑性变形过程中应力集中较小,薄膜状残余奥氏体对裂纹产生钝化作用,使其具有更低的应力腐蚀敏感性。采用淬火配分工艺的Q&P钢中马氏体板条较为粗短,薄膜状残余奥氏体较少。碳由马氏体分配到残余奥氏体中,马氏体与残余奥氏体形成微电偶效应,电化学腐蚀速率明显增大。Q&P钢组织中的块状残余奥氏体会在应力作用下变形为脆性马氏体,引发应力集中导致裂纹形核,同时产生位错堆积和残余微应力,进一步促进了裂纹的萌生及扩展。

关键词 先进高强度钢海洋环境残余奥氏体电化学腐蚀应力腐蚀开裂    
Abstract

The stress corrosion cracking behavior of two advanced high-strength steels (ultrafine bainite steel, Q&P steel) of the same composition in an artificial marine environment 3.5%NaCl solution was studied by means of microscopic characterization (SEM, XRD, EBSD), electrochemical test and slow strain rate stress corrosion test. The results show that being subjected to treatment with isothermal process,the aquired ultrafine bainitic steel presents significantly refined bainitic ferrite laths, companied with more thin film-like residual austenite herewith, presents higher strength and elongation at break. The bainite ferrite lath and residual austenite form a micro-electric couple, the lower potential of bainite ferrite acts as an anode thus suffered from dissolution, while the active dissolution site induces the initiation and propagation of cracks. In addition, ultrafine bainitic steel has fine grain, low stress during plastic deformation, thereby, lower stress corrosion sensitivity, which is due to the passivation of cracks caused by thin film residual austenite. Being subjected to treatment with quenching-partitioning process, the resulted Q&P steel presents thick and short martensitic lath with less amount of thin film residual austenite. However carbon in martensite is partially transferred to the residual austenite, nevertheless, the martensite and residual austenite also form a micro-electric couple, which significantly increases the electrochemical corrosion rate. The blocklike residual austenite in Q&P steel structure may be broken into brittle martensite under the action of stress, causing stress concentration leading to crack nucleation, dislocation accumulation and residual stress, which further promotes crack initiation and propagation.

Key wordsadvanced high-strength steel    marine environment    residual austenite    electrochemical corrosion    stress corrosion cracking
收稿日期: 2024-01-17      32134.14.1005.4537.2024.028
ZTFLH:  TG174  
基金资助:武汉市科学技术局知识创新专项(20220108101020316);广东省基础与应用基础研究基金(2023A1515011154)
通讯作者: 张弦,E-mail: xianzhang@wust.edu.cn,研究方向为材料的腐蚀与防护
Corresponding author: ZHANG Xian, E-mail: xianzhang@wust.edu.cn
作者简介: 苏志诚,男,1999年生,硕士生
图1  采用JMatPro计算的TTT曲线和实验钢的热处理工艺
图2  超细贝氏体钢与Q&P钢的金相组织
图3  超细贝氏体钢与Q&P钢微观组织TEM分析结果
SampleNumberAverage value / nmVariance / nm²Standard deviation / nm
B(RA)1008637319
BF10017194230
QP(RA)100137166940
M100209196144
表1  超细贝氏体钢与Q&P钢中不同组织的尺寸统计
图4  超细贝氏体钢与Q&P钢的XRD图谱
图5  2种实验钢在3.5%NaCl溶液中的动电位极化曲线图
图6  2种实验钢在3.5%NaCl溶液中的阻抗谱及其等效电路图
Fitting parameterRs / Ω·cm2Rf / Ω·cm2Rct / Ω·cm2CPE, Y01 / S·sec n ·cm-2CPE, Y02 / S·sec n ·cm-2
B4.5301664.05.74 × 10-45.22 × 10-4
QP5.5131.4803.12.09 × 10-38.24 × 10-4
表2  2种实验钢的电化学阻抗拟合参数值
图7  2种实验钢在空气与海水环境(3.5%NaCl)中拉伸的应力-应变曲线、加工硬化率曲线与应力腐蚀敏感性
Sample

Yield

strength

MPa

Tensile

strength

MPa

Elongation

%

B-air1117145213.9
QP-air1139145112.2
B-seawater1205145012.4
QP-seawater107613974.6
表3  2种实验钢在空气与海水中的力学性能
图8  2种实验钢加载一定程度后的XRD图谱
图9  2种实验钢加载一定程度后在3.5%NaCl溶液中的动电位极化曲线图
图10  2种实验钢在空气与海水环境中断口表面宏观形貌图
图11  超细贝氏体钢和Q&P钢在空气与模拟海水中的拉伸断口形貌图
Fitting parameterIcorr / A·cm-2Ecorr / V
B6.902 × 10-60.476

B(0.75σs)

B(1σs)

QP

1.523 × 10-5

1.697 × 10-5

1.188 × 10-5

-0.290

-0.319

-0.390

QP(0.75σs)3.352 × 10-5-0.332
QP(1σs)3.878 × 10-5-0.370
表4  2种实验钢在加载一定程度后在3.5%NaCl溶液中的极化曲线的拟合参数
图12  2种实验钢在空气与模拟海水中断口剖面裂纹EBSD图
1 Lou H Y. Effect of quenching-partitioning process on the microstructure and mechanical properties of ultra high strength martensite steels [D]. Yichang: China Three Gorges University, 2020
1 (娄航宇. QP工艺对超高强度马氏体钢组织和性能的影响 [D]. 宜昌: 三峡大学, 2020)
2 Liu Y G, Pan H B, Zhan H, et al. Introduction of several typical 3 rd generation AHSS for automotive industry [J]. Heat Treat. Met., 2015, 40(8): 13
2 (刘永刚, 潘红波, 詹 华 等. 几种典型第三代汽车用先进高强度钢技术浅析 [J]. 金属热处理, 2015, 40(8): 13)
3 Kan L Y, Zhu T, Ye Q B, et al. Effect of Ni-rich austenite on strength and toughness of 1 GPa grade ultra-high strength offshore steel [J]. J. Mater. Metall., 2022, 21: 216
3 (阚立烨, 朱 拓, 叶其斌 等. 富Ni奥氏体对1GPa级超高强海工钢强度与韧性的影响 [J]. 材料与冶金学报, 2022, 21: 216)
4 Li S, Dong L J, Zheng H B, et al. Research progress of stress corrosion cracking of ultra-high strength steels for aircraft landing gear [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1178
4 (李 双, 董立谨, 郑淮北 等. 飞机起落架用超高强钢应力腐蚀开裂研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1178)
5 Yang Y, Cheng X Q, Zhao J B, et al. A study of rust layer of low alloy structural steel containing 0.1 % Sb in atmospheric environment of the Yellow Sea in China [J]. Corros. Sci., 2021, 188: 109549
6 Feng Y P, Zhang X, Wu K M, et al. Influence of heat treatment process on microstructure and corrosion resistance of ultrafine bainite steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 602
6 (冯彦朋, 张 弦, 吴开明 等. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 602)
doi: 10.11902/1005.4537.2020.220
7 Jiao Y, Zhang S H, Tan Y. Research progress on stress corrosion cracking of stainless steel for nuclear power plant in high-temperature and high-pressure water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 417
7 (焦 洋, 张胜寒, 檀 玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 417)
8 Jeong I, Ryu K M, Lee D G, et al. Austenite morphology and resistance to hydrogen embrittlement in medium Mn transformation-induced plasticity steel [J]. Scr. Mater., 2019, 169: 52
9 Huang K, Logé R E. A review of dynamic recrystallization phenomena in metallic materials [J]. Mater. Des., 2016, 111: 548
10 Zhang X, Gong L, Feng Y P, et al. Effect of retained austenite on corrosion behavior of ultrafine bainitic steel in marine environment [J]. Acta Metall. Sin. (Engl. Lett), 2023, 36: 717
11 Jia J H, Liu Z Y, Li X G, et al. Comparative study on the stress corrosion cracking of a new Ni-Advanced high strength steel prepared by TMCP, direct quenching, and quenching & tempering [J]. Mater. Sci. Eng., 2021, 825A: 141854
12 Sun M, Xiao K, Dong C F, et al. Stress corrosion cracking behavior of ultrahigh strength steel in the atmospheric environment [J]. Sci. Technol. Rev., 2012, 30(30): 20
doi: 10.3981/j.issn.1000-7857.2012.30.001
12 (孙 敏, 肖 葵, 董超芳 等. 超高强度钢在大气环境中应力腐蚀行为研究 [J]. 科技导报, 2012, 30(30): 20)
13 Zackay V F, Parker E R, Fahr D, et al. The enhancement of ductility in high-strength steels [J]. Trans. Am. Soc. Met., 1967, 60: 252
14 Gao G H, Zhang H, Gui X L, et al. Enhanced strain hardening capacity in a lean alloy steel treated by a “Disturbed” Bainitic austempering process [J]. Acta Mater., 2015, 101: 31
15 Dong X X, Shen Y F. Improving mechanical properties and corrosion resistance of 0.5 wt.% C TRIP steel by adjusting retained austenite stability and microstructural constituents [J]. Mater. Sci. Eng., 2022, 852A: 143737
16 Liu B P, Zhang Z M, Wang J Q, et al. Review of stress corrosion crack initiation of nuclear structural materials in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 513
16 (刘保平, 张志明, 王俭秋 等. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 513)
doi: 10.11902/1005.4537.2021.130
17 Fan X. X-Ray Metallogy [M]. Beijing: China Machine Press, 1981
17 (范 雄. X射线金属学 [M]. 北京: 机械工业出版社, 1981)
18 Narayanaswamy B, Hodgson P, Timokhina I, et al. The impact of retained austenite characteristics on the two-body abrasive wear behavior of ultrahigh strength bainitic steels [J]. Metall. Mater. Trans., 2016, 47A: 4883
19 Wei J, Dong J H, Ke W, et al. Influence of Inclusions on early corrosion development of Ultra-Low carbon bainitic steel in NaCl solution [J]. Corrosion, 2015, 71: 1467
20 Kadowaki M, Muto I, Sugawara Y, et al. Beneficial role of retained austenite in pitting corrosion resistance of Fe-C-Si-Mn steel in chloride environments [J]. Corros. Sci., 2022, 200: 110251
21 Hu G, Xu C C, Zhang X H. Influence of martensite transformation on chemical and electrochemical behavior of pitting occluded cell [J]. Mater. Prot., 2002, 35(9): 15
21 (胡 钢, 许淳淳, 张新生. 马氏体相变对孔蚀闭塞区化学和电化学行为的影响 [J]. 材料保护, 2002, 35(9): 15)
22 Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel [J]. Scr. Mater., 2013, 68: 321
23 Hu F, Zhang G H, Wan X L, et al. Regulation of retained austenite in the micro/nano-structured bainitic steels and its influence on the stability [J]. Trans. Mater. Heat Treat., 2017, 38(4): 15
23 (胡 锋, 张国宏, 万响亮, 等. 微纳结构贝氏体钢中残留奥氏体的调控及其对稳定性的影响 [J]. 材料热处理学报, 2017, 38(4): 15)
24 Gutman M M. Mechanochemistry of Materials [M]. Cambridge: Cambridge International Science Pub., 1998
25 Caballero F G, Bhadeshia H K D H. Very strong bainite [J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 251
26 Wu W, Hao W K, Liu Z Y, et al. Comparative study of the stress corrosion behavior of a multiuse bainite steel in the simulated tropical marine atmosphere and seawater environments [J]. Constr. Build. Mater., 2020, 239: 117903
27 Sun M, Xiao K, Dong C F, et al. Effect of stress on electrochemical characteristics of pre-cracked ultrahigh strength stainless steel in acid sodium sulphate solution [J]. Corros. Sci., 2014, 89: 137
28 Zhou S B, Hu F, Zhou W, et al. Effect of retained austenite on impact toughness and fracture behavior of medium carbon submicron-structured bainitic steel [J]. J. Mater. Res. Technol., 2021, 14: 1021
doi: 10.1016/j.jmrt.2021.07.011
29 Zhou G Y, Wang X T, Cao G H, et al. Effect of double tempering process on sulfide stress cracking susceptibility in API-5CT-C110 casing steel [J]. Corros. Sci., 2023, 219: 111208
30 Mao G J, Cayron C, Cao R, et al. The relationship between low-temperature toughness and secondary crack in low-carbon bainitic weld metals [J]. Mater. Charact., 2018, 145: 516
31 Wang L W, Xin J C, Cheng L J, et al. Influence of inclusions on initiation of pitting corrosion and stress corrosion cracking of X70 steel in near-neutral pH environment [J]. Corros. Sci., 2018, 147: 108
32 Wu J, Bao L, Gu Y, et al. The strengthening and toughening mechanism of dual martensite in quenching-partitioning steels [J]. Mater. Sci. Eng., 2020, 772A: 138765
[1] 张颛利, 戴海龙, 张喆, 石守稳, 陈旭. HF溶液中316L应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1633-1640.
[2] 张炬焕, 刘静, 彭晶晶, 张弦, 吴开明. Al-Zn-In系牺牲阳极在模拟海洋环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1223-1233.
[3] 吕晓明, 王震宇, 韩恩厚. 纳米改性环氧隔热涂层的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1234-1242.
[4] 冯少宇, 周兆辉, 杨兰兰, 乔岩欣, 王金龙, 王福会. 海洋环境下TC4合金的电化学及磨损行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1243-1254.
[5] 刘久云, 董立谨, 张言, 王勤英, 刘丽. 油气田异种金属焊接接头硫化物应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
[6] 原玉, 向勇, 李晨, 赵雪会, 闫伟, 姚二冬. CCUS系统中CO2 注入井管材腐蚀研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[7] 刘国强, 张东方, 陈昊翔, 范志宏, 熊建波, 吴清发. 2304双相不锈钢钢筋在混凝土孔隙模拟液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.
[8] 李双, 董立谨, 郑淮北, 吴铖川, 王洪利, 凌东, 王勤英. 飞机起落架用超高强钢应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[9] 郭昭, 李晗, 崔中雨, 王昕, 崔洪芝. A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[10] 高智悦, 姜波, 樊志彬, 王晓明, 李辛庚, 张振岳. 典型接地材料在碱性土壤模拟液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 191-196.
[11] 王育鑫, 吴波, 戴乐阳, 胡科峰, 吴建华, 杨阳, 闫福磊, 张贤慧. 低合金钢在模拟海洋低温环境下的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 894-902.
[12] 陈婷婷, 武晓雷, 韩培德. SMAT技术制备梯度纳米孪晶结构及其腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 973-978.
[13] 吕迎玺. 高Mo超级奥氏体不锈钢耐Cl-腐蚀性能分析[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
[14] 梅佳雪, 杜尊峰, 朱海涛. 基于随机腐蚀的船舶结构极限承载力研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 662-668.
[15] 滕琳, 陈旭. 海洋环境中金属电偶腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 531-539.