Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (5): 1243-1254     CSTR: 32134.14.1005.4537.2023.390      DOI: 10.11902/1005.4537.2023.390
  研究报告 本期目录 | 过刊浏览 |
海洋环境下TC4合金的电化学及磨损行为研究
冯少宇1, 周兆辉1, 杨兰兰1(), 乔岩欣1, 王金龙2, 王福会2
1 江苏科技大学材料科学与工程学院 镇江 212003
2 东北大学材料科学与工程学院 沈阳 110819
Electrochemical and Wear Behavior of TC4 Alloy in Marine Environment
FENG Shaoyu1, ZHOU Zhaohui1, YANG Lanlan1(), QIAO Yanxin1, WANG Jinlong2, WANG Fuhui2
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

冯少宇, 周兆辉, 杨兰兰, 乔岩欣, 王金龙, 王福会. 海洋环境下TC4合金的电化学及磨损行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1243-1254.
Shaoyu FENG, Zhaohui ZHOU, Lanlan YANG, Yanxin QIAO, Jinlong WANG, Fuhui WANG. Electrochemical and Wear Behavior of TC4 Alloy in Marine Environment[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1243-1254.

全文: PDF(9070 KB)   HTML
摘要: 

通过研究TC4合金在不同pH模拟海水中的电化学行为,表明合金在中性(pH = 7)模拟海水中耐蚀性能最好,在酸性(pH = 2)模拟海水中的耐蚀性能最差。通过研究TC4合金在模拟海水中的摩擦磨损行为,可见海水介质的存在会降低摩擦系数和减少磨损量,其磨损机理从空气介质中氧化磨损和磨粒磨损转变为腐蚀磨损和疲劳磨损。通过开展了TC4合金在模拟海水中磨损与电化学的交叉实验,表明在海洋介质和循环载荷的共同作用下,TC4合金的表面会同时发生钝化膜的破损与修复。钝化膜的破损剥落速率大于其生成速率,钝化膜失去保护作用,反而加速了合金腐蚀。但循环载荷消失后,合金在模拟海水中再次生成完整钝化膜。

关键词 TC4合金摩擦磨损电化学海洋环境    
Abstract

With the rapid development of utilization and exploitation of deep-sea resources, the demand of marine engineering structural materials with lightweight and corrosion-resistant becomes urgent. TC4 alloy has attracted widespread attention for its excellent strength and corrosion resistance in seawater. Herein, the electrochemical behavior and friction-wear performance of TC4 alloy in simulated seawaters with different pH value is studied. The alloy performs better in the neutral simulated seawater (pH = 7) rather than in the acidic ones (pH = 2). After examination of the friction and wear behavior of TC4 alloy in the simulated seawater, it is indicated that the presence of seawater is favorite the reduction of the friction coefficient and wear loss. The existence of the seawater made the wear mechanism changed from the oxidative- and abrasive-wear in air to the corrosive- and fatigue-wear. At the same time, through the experiments by the combination of electrochemical corrosion-wear loading in the simulated seawater, it follows that by the combined action of sea water and the cyclic wear load, the passivation film on the TC4 alloy surface may experience alternating damaging- and repairing-processes. When the damage speed of passivation film exceeds repair speed, its protective effect no longer exists, in other word, the damaged passivation film may accelerate the TC4 alloy corrosion. However, when the cyclic load is removed, the passivation film of TC4 alloy may completely be repaired in the simulated seawater.

Key wordsTC4 alloy    frictional wear    electrochemistry    marine environment
收稿日期: 2023-12-16      32134.14.1005.4537.2023.390
ZTFLH:  TG172.5  
基金资助:国家自然科学基金(52001142);青年人才托举工程(2022QNRC001)
通讯作者: 杨兰兰,E-mail:lanlanyang@just.edu.cn,研究方向为金属腐蚀与防护
Corresponding author: YANG Lanlan, E-mail: lanlanyang@just.edu.cn
作者简介: 冯少宇,男,2000年生,硕士生
图1  TC4合金在不同pH模拟海水中电化学阻抗谱图
pH

Rs

Ω·cm2

Q1

Ω-1·s n ·cm-2

n

Rp

Ω·cm2

Q2

Ω-1·s n ·cm-2

Rct

Ω·cm2

210.532.35 × 10-50.882.77 × 1031.05 × 10-44.68 × 1010
710.271.41 × 10-50.872.43 × 106--
1211.521.67 × 10-50.935.22 × 105--
表1  TC4合金在不同pH值模拟海水中电化学阻抗谱的拟合结果
图2  TC4合金在不同pH模拟海水中动电位极化曲线图
pHEcorr / VSCEIcorr / A·cm-2
2-0.412.45 × 10-7
7-0.511.06 × 10-8
12-0.614.74 × 10-8
表2  TC4合金在不同pH模拟海水中动电位极化曲线参数
图3  TC4合金在不同pH模拟海水中动电位极化后的表面形貌图
图4  TC4合金在空气和模拟海水中的摩擦系数曲线图
图5  TC4合金在空气和模拟海水中的平均摩擦系数柱状图
图6  TC4合金在空气中磨痕截面曲线图和三维轮廓图
图7  TC4合金在模拟海水中磨痕截面曲线图和三维轮廓图
图8  TC4合金在不同介质中磨痕SEM形貌
图9  TC4合金在摩擦磨损过程中动电位极化曲线图
LoadEcorr / VSCEIcorr / A·cm-2
0 N-0.511.06 × 10-8
10 N-0.442.47 × 10-6
15 N-0.491.41 × 10-5
20 N-0.523.38 × 10-5
表3  不同载荷下动电位极化曲线参数
图10  TC4合金在静止-磨损交替实验中开路电位曲线图
图11  Ti-Cl--H2O体系的电位-pH图[44]
图12  TC4合金在空气和模拟海水中磨损量柱状图
1 Verichev S N, Mishakin V V, Nuzhdin D A, et al. Experimental study of abrasive wear of structural materials under the high hydrostatic pressure [J]. Ocean Eng., 2015, 99: 9
2 Traverso P, Canepa E. A review of studies on corrosion of metals and alloys in deep-sea environment [J]. Ocean Eng., 2014, 87: 10
3 Cui Z Y, Chen S S, Dou Y P, et al. Passivation behavior and surface chemistry of 2507 super duplex stainless steel in artificial seawater: influence of dissolved oxygen and pH [J]. Corros. Sci., 2019, 150: 218
4 Qiao Y X, Tian Z H, Cai X, et al. Cavitation erosion behaviors of a nickel-free high-nitrogen stainless steel [J]. Tribol. Lett., 2019, 67: 1
5 Li L, Qiao Y X, Zhang L M, et al. Effect of surface damage induced by cavitation erosion on pitting and passive behaviors of 304L stainless steel [J]. Int. J. Miner. Metall. Mater., 2023, 30: 1338
6 Wang Y, Liu Y H, Mu X L, et al. Effect of environmental factors on material transfer in thin liquid film during atmospheric corrosion process in marine environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1015
6 汪 洋, 刘元海, 慕仙莲 等. 海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 1015
7 Basumatary J, Wood R J K. Synergistic effects of cavitation erosion and corrosion for nickel aluminium bronze with oxide film in 3.5% NaCl solution [J]. Wear, 2017, 376/377: 1286
8 Barr C, Pateras A, Molotnikov A, et al. Effect of composition on the tensile and corrosion performance of nickel aluminium bronze produced via laser powder bed fusion [J]. Addit. Manuf., 2022, 54: 102771
9 Deng C M, Liu Z, Xia D H, et al. Localized corrosion mechanism of 5083-H111 Al alloy in simulated dynamic seawater zone [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 683
9 邓成满, 刘喆, 夏大海 等. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制 [J]. 中国腐蚀与防护学报, 2023, 43: 683
doi: 10.11902/1005.4537.2023.140
10 Cheng H X, Luo H, Wang X F, et al. Electrochemical corrosion and passive behavior of a new high-nitrogen austenitic stainless steel in chloride environment [J]. Mater. Chem. Phys., 2022, 292: 126837
11 Shi F, Tian P C, Jia N, et al. Improving intergranular corrosion resistance in a nickel-free and manganese-bearing high-nitrogen austenitic stainless steel through grain boundary character distribution optimization [J]. Corros. Sci., 2016, 107: 49
12 Zhu M, He F, Yuan Y F, et al. A comparative study on the corrosion behavior of CoCrNi medium-entropy alloy and 316L stainless steel in simulated marine environment [J]. Intermetallics, 2021, 139: 107370
13 Kumar P, Michalek M, Cook D H, et al. On the strength and fracture toughness of an additive manufactured CrCoNi medium-entropy alloy [J]. Acta Mater., 2023, 258: 119249
14 Tang Y B, Shen X W, Qiao Y X, et al. Corrosion behavior of a selective laser melted inconel 718 alloy in a 3.5 wt.% NaCl solution [J]. J. Mater. Eng. Perform., 2021, 30: 5506
15 Philip J T, Mathew J, Kuriachen B. Tribology of Ti6Al4V: a review [J]. Friction, 2019, 7: 497
doi: 10.1007/s40544-019-0338-7
16 Chen T, Li W P, Liu D F, et al. Effects of heat treatment on microstructure and mechanical properties of TiC/TiB composite bioinert ceramic coatings in-situ synthesized by laser cladding on Ti6Al4V [J]. Ceram. Int., 2021, 47: 755
17 Dong Y C, Huang S, Wang Y Y, et al. Stress corrosion cracking of TC4 ELI alloy with different microstructure in 3.5% NaCl solution [J]. Mater. Charact., 2022, 194: 112357
18 Jiang X J, Meng Y G, Zhang J T, et al. Optimization of pitting corrosion resistance of TC4-30Zr alloy by laser surface remelting [J]. J. Mater. Res. Technol., 2023, 26: 8879
19 Feng X T, Lei J B, Gu H, et al. Effect of scanning speeds on electrochemical corrosion resistance of laser cladding TC4 alloy [J]. Chin. Phys. B, 2019, 28: 026802
20 Sun Z P, He G Y, Meng Q J, et al. Corrosion mechanism investigation of TiN/Ti coating and TC4 alloy for aircraft compressor application [J]. Chin. J. Aeronaut., 2020, 33: 1824
21 Lin L Y, Tian Y H, Yu W X, et al. Corrosion and hardness characteristics of Ti/TiN-modified Ti6Al4V alloy in marine environment [J]. Ceram. Int., 2022, 48: 34848
22 Krawiec H, Vignal V, Schwarzenboeck E, et al. Role of plastic deformation and microstructure in the micro-electrochemical behaviour of Ti-6Al-4V in sodium chloride solution [J]. Electrochim. Acta, 2013, 104: 400
23 Zhu L J, Feng C, Zhang K, et al. Research progress on properties and application of titanium alloy oil country tubular goods [J]. Mater. Sci. Forum, 2022, 1071: 56
24 Liu Q, Liu H T, Xie J F, et al. Influence of Ru on structure and corrosion behavior of passive film on Ti-6Al-4V alloy in oil and gas exploration conditions [J]. Sci. Rep., 2022, 12: 16586
doi: 10.1038/s41598-022-21047-0 pmid: 36198740
25 Zhao M F, Liu H T, Liu Q, et al. Investigation on electrochemical behaviour and corrosion resistance of Ti-6Al-4V-0.5Ni-0.5Nb-0.05Ru alloy in simulated conditions for oil and gas exploration [J]. Int. J. Electrochem. Sci., 2022, 17: 22075
26 Almeraya-Calderón F, Jáquez-Muñoz J M, Maldonado-Bandala E, et al. Corrosion resistance of titanium alloys anodized in alkaline solutions [J]. Metals, 2023, 13: 1510
27 Maracci D, Alfano G, Serpieri R, et al. Characterising interfaces for reinforced concrete: experiments and multiplane cohesive zone modelling for titanium alloy rebars [J]. Eur. J. Mech. A Solids, 2019, 75: 258
28 Cheng R H, Luo X T, Huang G S, et al. Corrosion and wear resistant WC17Co-TC4 composite coatings with fully dense microstructure enabled by in-situ forging of the large-sized WC17Co particles in cold spray [J]. J. Mater. Process. Technol., 2021, 296: 117231
29 Xiao M, Wang Q Y, Zhang X S, et al. Effect of laser quenching on microstructure, corrosion and wear behavior of AISI 4130 steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 713
29 肖 檬, 王勤英, 张兴寿 等. 激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制 [J]. 中国腐蚀与防护学报, 2023, 43: 713
30 Zhang P, Shan L, Su X L, et al. Microstructure and tribological performance of CrTiSiCN coatings on 316L and TC4 in seawater [J]. Tribol. Int., 2021, 156: 106832
31 Zhou W H, Song J, Chen Z H, et al. Effect of low temperature degradation on tribological properties of YSZ thermal barrier coatings [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 261
31 周文晖, 宋 健, 陈泽浩 等. 水热腐蚀老化对热障涂层的摩擦磨损性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 261
doi: 10.11902/1005.4537.2022.075
32 Chen J, Yan F Y. Tribocorrosion behaviors of Ti-6Al-4V and Monel K500 alloys sliding against 316 stainless steel in artificial seawater [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 1356
33 Chen J, Zhang Q. Effect of electrochemical state on corrosion-wear behaviors of TC4 alloy in artificial seawater [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1011
34 Yang X, Wang W L, Ma W J, et al. Corrosion and wear properties of micro-arc oxidation treated Ti6Al4V alloy prepared by selective electron beam melting [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 2132
35 Qiao Y X, Zheng Y G, Ke W, et al. Electrochemical behaviour of high nitrogen stainless steel in acidic solutions [J]. Corros. Sci., 2009, 51: 979
36 Wang S, Zhao Y H, Xu X T, et al. Evolution of mechanical properties and corrosion resistance of Al0.6CoFeNiCr0.4 high-entropy alloys at different heat treatment temperature [J]. Mater. Chem. Phys., 2020, 244: 122700
37 Yang Z, Yu M, Han C, et al. Evolution and corrosion resistance of passive film with polarization potential on Ti-5Al-5Mo-5V-1Fe-1Cr alloy in simulated marine environments [J]. Corros. Sci., 2023, 221: 111334
38 Xie F X, He X B, Cao S L, et al. Influence of pore characteristics on microstructure, mechanical properties and corrosion resistance of selective laser sintered porous Ti-Mo alloys for biomedical applications [J]. Electrochim. Acta, 2013, 105: 121
39 Wang Y B, Zhao W, Li L, et al. Relation of normal load with test temperature at mild–severe wear transition state for Mg-Gd-Y-Zr alloy [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 2986
40 Milošev I, Metikoš-Huković M, Strehblow H H. Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy [J]. Biomaterials, 2000, 21: 2103
doi: 10.1016/s0142-9612(00)00145-9 pmid: 10966021
41 Henry P, Takadoum J, Berçot P. Tribocorrosion of 316L stainless steel and TA6V4 alloy in H2SO4 media [J]. Corros. Sci., 2009, 51: 1308
42 Qiao Y X, Qin Y, Zhou H L, et al. Electrochemical hydrogen charging on corrosion behavior of Ti-6Al-4V alloy in artificial seawater [J]. Chin. J. Mech. Eng., 2024, 37: 2
43 Wu W, Liu J, Liu Z Y, et al. Surface characterization of the commercially pure titanium after hydrogen charging and its electrochemical characteristics in artificial seawater [J]. J. Electroanal. Chem., 2018, 822: 23
44 Kelsall G H, Robbins D J. Thermodynamics of Ti-H2O-F(-Fe) systems at 298 K [J]. J. Electroanal. Chem. Interfacial Electrochem., 1990, 283: 135
45 Tao S, Li D Y. Investigation of corrosion–wear synergistic attack on nanocrystalline Cu deposits [J]. Wear, 2007, 263: 363
46 Xu Y D, Qi J H, Nutter J, et al. Correlation between the formation of tribofilm and repassivation in biomedical titanium alloys during tribocorrosion [J]. Tribol. Int., 2021, 163: 107147
47 Murkute P, Ramkumar J, Choudhary S, et al. Effect of alternate corrosion and wear on the overall degradation of a dual phase and a mild steel [J]. Wear, 2016, 368/369: 368
48 Zhou H Y, Shi X L, Lu G C, et al. Friction and wear behaviors of TC4 alloy with surface microporous channels filled by Sn-Ag-Cu and Al2O3 nanoparticles [J]. Surf. Coat. Technol., 2020, 387: 125552
49 Wu J J, Shen M L, Wang W, et al. High power arc ion plating of thick Cr2N hard coating on Ti-based alloys: oxidation and wear behaviors [J]. Surf. Coat. Technol., 2022, 448: 128924
50 Pang M H, Zhai S J, Hu Y K, et al. Tribological properties of 304 stainless steel with rainwater corrosion [J]. Mater. Chem. Phys., 2023, 297: 127329
[1] 禹文娟, 王天丛, 赵东杨, 向雪云, 吴航, 王文. 封闭型耐蚀涂层的寿命预测模型研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1617-1624.
[2] 苏志诚, 张弦, 程焱, 刘静, 吴开明. 同成分的超细贝氏体钢和Q&P钢在海水中应力腐蚀开裂行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[3] 董征, 毛永祺, 孟洲, 陈向翔, 付传清, 陆晨涛. 应力作用下钢筋在模拟混凝土孔隙液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1547-1556.
[4] 陆添爱, 蒋文昊, 吴伟, 张俊喜. 基于接地材料功能需求的耐蚀铸铁表面改性研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1443-1453.
[5] 张雅妮, 王思敏, 樊冰. TC4钛合金在O2 + CO2 气氛的高温高压模拟水沉积液中表面形成的钝化膜研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[6] 谢文珍, 王震宇, 韩恩厚. 耐蚀钢筋在模拟混凝土孔隙液环境及海砂混凝土中钢筋在模拟海水环境中的钝化及腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(6): 1454-1464.
[7] 徐桂芝, 杜小泽, 胡晓, 宋洁. Pt涂层对TA4双极板在质子交换膜制氢电解池阳极环境中的电化学行为与界面导电性能研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1370-1376.
[8] 赵连红, 王英芹, 刘元海, 何卫平, 王浩伟. 四种飞机起落架用钢在模拟海水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1263-1273.
[9] 王天丛, 赵东杨, 向雪云, 吴航, 王文. 一种环氧耐蚀涂层在NaCl溶液中的劣化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1361-1369.
[10] 张炬焕, 刘静, 彭晶晶, 张弦, 吴开明. Al-Zn-In系牺牲阳极在模拟海洋环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1223-1233.
[11] 吕晓明, 王震宇, 韩恩厚. 纳米改性环氧隔热涂层的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1234-1242.
[12] 朱立洋, 陈俊全, 张欣欣, 董泽华, 蔡光义. 磁场对金属腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1117-1124.
[13] 刘喆, 邓成满, 魏军胜, 夏大海. 涂覆有机涂层的镀锡薄钢板耐蒸煮性能电化学快速检测技术研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 883-890.
[14] 王博, 安士忠, 郭俊卿, 纪运广, 李志强. 商用MB1MB8镁合金在NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2024, 44(4): 1073-1080.
[15] 马晓伟, 薛荣洁, 王涛涛, 杨亮, 刘珍光. 锆基非晶合金与传统合金在海水中的耐腐蚀性能对比研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 949-956.