|
|
聚苯胺光热超疏水防冰涂层的制备及其防冰除冰性能 |
安燕, 荆永良, 刘涛( ), 张玉良, 类延华, 李晓峰( ), 董丽华 |
上海海事大学海洋科学与工程学院 上海 201306 |
|
Preparation, Anti-icing and De-icing Performance of Polyaniline Photothermal Superhydrophobic Anti-icing Coating |
AN Yan, JING Yongliang, LIU Tao( ), ZHANG Yuliang, LEI Yanhua, LI Xiaofeng( ), DONG Lihua |
College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China |
引用本文:
安燕, 荆永良, 刘涛, 张玉良, 类延华, 李晓峰, 董丽华. 聚苯胺光热超疏水防冰涂层的制备及其防冰除冰性能[J]. 中国腐蚀与防护学报, 2024, 44(6): 1485-1494.
Yan AN,
Yongliang JING,
Tao LIU,
Yuliang ZHANG,
Yanhua LEI,
Xiaofeng LI,
Lihua DONG.
Preparation, Anti-icing and De-icing Performance of Polyaniline Photothermal Superhydrophobic Anti-icing Coating[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1485-1494.
1 |
He Z W, Zhuo Y Z, Zhang Z L, et al. Design of icephobic surfaces by lowering ice adhesion strength: a mini review [J]. Coatings, 2021, 11: 1343
|
2 |
Zangrossi F, Ghosh B, Xu F, et al. Improvement in electrical characteristics by surface modification of multi-wall carbon nanotube based buckypaper for de-icing application [J]. J. Compos. Mater., 2022, 56: 4487
|
3 |
Lin Y B, Chen H F, Wang G Y, et al. Recent progress in preparation and anti-icing applications of superhydrophobic coatings [J]. Coatings, 2018, 8: 208
|
4 |
He Z W, Xie H M, Jamil M I, et al. Electro-/photo-thermal promoted anti-icing materials: a new strategy combined with passive anti-icing and active De-icing [J]. Adv. Mater. Interfaces, 2022, 9: 2200275
|
5 |
Cong Q, Qin X Z, Chen T K, et al. Research progress of superhydrophobic materials in the field of Anti-/De-icing and their preparation: a review [J]. Materials, 2023, 16: 5151
|
6 |
Xie Z T, Tian Y, Shao Y C, et al. Recent progress in anti-icing and deicing applications of the photothermal conversion materials [J]. Prog. Org. Coat., 2023, 184: 107834
|
7 |
Wu Y L, Dong L, Shu X, et al. Recent advancements in photothermal anti-icing/deicing materials [J]. Chem. Eng. J., 2023, 469: 143924
|
8 |
Jiang G, Chen L, Zhang S D, et al. Superhydrophobic SiC/CNTs coatings with photothermal deicing and passive anti-icing properties [J]. ACS Appl. Mater. Interfaces, 2018, 10: 36505
|
9 |
Hu J H, Jiang G. Superhydrophobic coatings on iodine doped substrate with photothermal deicing and passive anti-icing properties [J]. Surf. Coat. Technol., 2020, 402: 126342
|
10 |
Cheng T T, He R, Zhang Q H, et al. Magnetic particle-based super-hydrophobic coatings with excellent anti-icing and thermoresponsive deicing performance [J]. J. Mater. Chem., 2015, 3A: 21637
|
11 |
Wang J P, Zhang D H. One-dimensional nanostructured polyaniline: syntheses, morphology controlling, formation mechanisms, new features, and applications [J]. Adv. Polym. Technol., 2013, 32: E323
|
12 |
Beygisangchin M, Rashid S A, Shafie S, et al. Preparations, properties, and applications of polyaniline and polyaniline thin films-a review [J]. Polymers, 2021, 13: 2003
|
13 |
Yu C C, Xu L J, Zhang Y Y, et al. Polymer-based nanomaterials for noninvasive cancer photothermal therapy [J]. ACS Appl. Polym. Mater., 2020, 2: 4289
|
14 |
Li X, Yue D M, Liu F, et al. Acid-doped polyaniline membranes for solar-driven interfacial evaporation [J]. Korean J. Chem. Eng., 2023, 40: 223
|
15 |
Jing X S, Guo Z G. Fabrication of biocompatible super stable lubricant-immobilized slippery surfaces by grafting a polydimethylsiloxane brush: excellent boiling water resistance, hot liquid repellency and long-term slippery stability [J]. Nanoscale, 2019, 11: 8870
doi: 10.1039/c9nr01556f
pmid: 31012900
|
16 |
Tan X H, Zhang Y Z, Liu X Y, et al. Employing micro pyramidal holes and porous nanostructures for enhancing the durability of lubricant-infused surfaces in anti-icing [J]. Surf. Coat. Technol., 2021, 405: 126568
|
17 |
Zhang M L, Liu Q, Chen R R, et al. Lubricant-infused coating by double-layer ZnO on aluminium and its anti-corrosion performance [J]. J. Alloy. Compd., 2018, 764: 730
|
18 |
Wang N, Xiong D S, Lu Y, et al. Design and fabrication of the lyophobic slippery surface and its application in anti-icing [J]. J. Phys. Chem., 2016, 120C: 11054
|
19 |
da Silva J E P, Temperini M L A, de Torresi S I C. Relation between structure and homogeneity of polyaniline blends by infrared and Raman spectroscopies [J]. Synth. Met, 2003, 135-136: 133
|
20 |
Rajagopalan R, Iroh J O. Characterization of polyaniline-polypyrrole composite coatings on low carbon steel: a XPS and infrared spectroscopy study [J]. Appl. Surf. Sci., 2003, 218: 58
|
21 |
Trchová M, Stejskal J, Prokeš J. Infrared spectroscopic study of solid-state protonation and oxidation of polyaniline [J]. Synth. Met., 1999, 101: 840
|
22 |
Jia Y, Meng F Z, Yang J X, et al. Enhanced thermal conductivity of epoxy polymer alloys blend with fluorine-contained hybrid silicon dioxide [J]. J. Polym. Res., 2022, 29: 331
|
23 |
Sreedhar B, Sairam M, Chattopadhyay D K, et al. Thermal and XPS studies on polyaniline salts prepared by inverted emulsion polymerization [J]. J. Appl. Polym. Sci., 2006, 101: 499
|
24 |
Piłkowski M, Morgiante G, Myśliwiec J, et al. Environmental testing of hydrophobic fluorosilane-modified substrates [J]. Surf. Interfaces, 2021, 23: 100987
|
25 |
Xu Q F, Liu Y, Lin F J, et al. Superhydrophobic TiO2-polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties [J]. ACS Appl. Mater. Interfaces, 2013, 5: 8915
|
26 |
Liu Y, Shao Y W, Wang Y Q, et al. An abrasion-resistant, photothermal, superhydrophobic anti-icing coating prepared by polysiloxane-modified carbon nanotubes and fluorine-silicone resin [J]. Colloids Surf., 2022, 648A: 129335
|
27 |
Lian Y C, Liang F Y, He J C, et al. Research progress on preparation process of superhydrophobic polytetrafluoroethylene [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 231
|
27 |
(连衍成, 梁富源, 贺建超 等. 超疏水聚四氟乙烯材料制备工艺的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 231)
doi: 10.11902/1005.4537.2022.176
|
28 |
He H, Guo Z G. Superhydrophobic materials used for anti-icing Theory, application, and development [J]. iScience, 2021, 24: 103357
|
29 |
Shirtcliffe N J, McHale G, Atherton S, et al. An introduction to superhydrophobicity [J]. Adv. Colloid Interface Sci., 2010, 161: 124
|
30 |
Zhang M, Chen P, Li J C, et al. Water-repellent and corrosion resistance properties of epoxy-resin-based slippery liquid-infused porous surface [J]. Prog. Org. Coat., 2022, 172: 107152
|
31 |
Grundmeier G, Schmidt W, Stratmann M. Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation [J]. Electrochim. Acta, 2000, 45: 2515
|
32 |
Song Q H, Zhang Y F, Li Q, et al. Corrosion electrochemical behavior of arc sprayed Al coatings [J]. Dig. J. Nanomater. Bios., 2022, 17: 825
|
33 |
Yuan S C, Wu Y F, Xu C H, et al. Influence of polyhydroxy hyperdispersant on anti-corrosion property of waterborne epoxy coatings [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 289
|
33 |
(袁世成, 吴艳峰, 徐长慧 等. 多羟基超分散剂对水性环氧涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 289)
doi: 10.11902/1005.4537.2022.292
|
34 |
Boinovich L B, Emelyanenko A M. Anti-icing potential of superhydrophobic coatings [J]. Mendeleev Commun., 2013, 23: 3
|
35 |
Zhang F, Xu D, Zhang D W, et al. A durable and photothermal superhydrophobic coating with entwinned CNTs-SiO2 hybrids for anti-icing applications [J]. Chem. Eng. J., 2021, 423: 130238
|
36 |
Ruan M, Zhan Y L, Wu Y S, et al. Preparation of PTFE/PDMS superhydrophobic coating and its anti-icing performance [J]. RSC Adv., 2017, 7: 41339
|
37 |
Wu B R, Cui X, Jiang H Y, et al. A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances [J]. J. Colloid Interface Sci., 2021, 590: 301
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|