Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (6): 1485-1494     CSTR: 32134.14.1005.4537.2024.010      DOI: 10.11902/1005.4537.2024.010
  研究报告 本期目录 | 过刊浏览 |
聚苯胺光热超疏水防冰涂层的制备及其防冰除冰性能
安燕, 荆永良, 刘涛(), 张玉良, 类延华, 李晓峰(), 董丽华
上海海事大学海洋科学与工程学院 上海 201306
Preparation, Anti-icing and De-icing Performance of Polyaniline Photothermal Superhydrophobic Anti-icing Coating
AN Yan, JING Yongliang, LIU Tao(), ZHANG Yuliang, LEI Yanhua, LI Xiaofeng(), DONG Lihua
College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
引用本文:

安燕, 荆永良, 刘涛, 张玉良, 类延华, 李晓峰, 董丽华. 聚苯胺光热超疏水防冰涂层的制备及其防冰除冰性能[J]. 中国腐蚀与防护学报, 2024, 44(6): 1485-1494.
Yan AN, Yongliang JING, Tao LIU, Yuliang ZHANG, Yanhua LEI, Xiaofeng LI, Lihua DONG. Preparation, Anti-icing and De-icing Performance of Polyaniline Photothermal Superhydrophobic Anti-icing Coating[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1485-1494.

全文: PDF(18244 KB)   HTML
摘要: 

首先以全氟癸基三乙氧基硅烷(FAS)修饰聚苯胺(PANI)得到改性材料F-PANI,进而与有机硅树脂(SR)复合得到兼具光热与超疏水性能的功能性涂层(F-PANI涂层)。该涂层的接触角为150.8°,滚动角为3°。具有较好的力学性能、自清洁性能和防腐性能。在20℃,1 Sun条件下,F-PANI涂层表面可以在5 min内达到83.5℃。在低温条件下,涂层同样表现出优异的光热性能。在-25℃,1 Sun条件下,涂层表面的水滴在830 s时完全冻结。与SR涂层相比,结冰速度明显延迟。在-15℃,1 Sun条件下,F-PANI涂层具有一定的除霜和除冰能力。

关键词 聚苯胺改性超疏水抗冰涂层光热除冰    
Abstract

The F-PANI material was synthesized by modifying polyaniline (PANI) with perfluorodecyl triethoxysilane (FAS), which was subsequently blended with silicone resin (SR) to fabricate a functional F-PANI coating that exhibits both photo-thermal and superhydrophobic properties. The coating displays a contact angle of 150.8o and a rolling angle of 3o, along with superior mechanical strength, self-cleaning ability, and anti-corrosion performance. Upon exposure to 1 Sun irradiation at 20oC, the F-PANI coating can attain a surface temperature of 83.5oC within five minutes. Additionally, the coating demonstrates excellent photo-thermal features even at low temperatures. By 1 Sun irradiation at -25oC, water droplets on the F-PANI coating were observed to be completely freezed after 830 s, showing a significantly slower freezing rate than the SR coating. Furthermore, the F-PANI coating exhibits defrosting and de-icing capability by 1 Sun irradiation at -15oC.

Key wordspolyaniline-modified    superhydrophobic anti-icing coating    photothermal de-icing
收稿日期: 2024-01-05      32134.14.1005.4537.2024.010
ZTFLH:  TG174  
基金资助:国家自然科学基金(51771108);上海市深远海洋装备材料工程技术中心(19DZ2253100)
通讯作者: 刘涛,E-mail:liutao@shmtu.edu.cn,研究方向为船舶与海洋工程材料
李晓峰,E-mail:xfli@shmtu.edu.cn,研究方向为船舶与海洋工程材料;
Corresponding author: LIU Tao, E-mail: liutao@shmtu.edu.cn
LI Xiaofeng, E-mail: xfli@shmtu.edu.cn
作者简介: 安 燕,女,1979年生,博士,教授
图1  制备氟改性聚苯胺粉末实验流程图
图2  PANI和F-PANI粉末的润湿性对比形貌和EDS分析,及F-PANI粉末的SEM形貌
图3  PANI和F-PANI粉末的FTIR谱和高分辨率XPS谱,及其C 1s XPS精细谱
图4  F-PANI涂层的宏观及微观形貌, 水滴在涂层表面的状态与Cassie润湿状态模型示意图,以及涂层在水中及其与水滴的接触角和滚动角照片
图5  F-PANI涂层砂纸磨损实验和落砂冲击实验示意图及其接触角和滚动角的变化曲线
图6  有机硅树脂涂层和F-PANI涂层在3种不同液体中的粘附行为
图7  马口铁、有机硅树脂涂层和F-PANI涂层的电化学阻抗谱和动电位极化曲线图
图8  液滴在有机硅树脂涂层和F-PANI涂层上的延时结冰过程示意图
图9  在不同光强下有机硅树脂涂层和F-PANI涂层表面最高温度的红外照片以及F-PANI涂层的升温曲线
图10  F-PANI涂层在不同温度和光照条件下5 min内最高温度红外照片
图11  F-PANI涂层除霜和除冰实验过程中表面形貌变化
1 He Z W, Zhuo Y Z, Zhang Z L, et al. Design of icephobic surfaces by lowering ice adhesion strength: a mini review [J]. Coatings, 2021, 11: 1343
2 Zangrossi F, Ghosh B, Xu F, et al. Improvement in electrical characteristics by surface modification of multi-wall carbon nanotube based buckypaper for de-icing application [J]. J. Compos. Mater., 2022, 56: 4487
3 Lin Y B, Chen H F, Wang G Y, et al. Recent progress in preparation and anti-icing applications of superhydrophobic coatings [J]. Coatings, 2018, 8: 208
4 He Z W, Xie H M, Jamil M I, et al. Electro-/photo-thermal promoted anti-icing materials: a new strategy combined with passive anti-icing and active De-icing [J]. Adv. Mater. Interfaces, 2022, 9: 2200275
5 Cong Q, Qin X Z, Chen T K, et al. Research progress of superhydrophobic materials in the field of Anti-/De-icing and their preparation: a review [J]. Materials, 2023, 16: 5151
6 Xie Z T, Tian Y, Shao Y C, et al. Recent progress in anti-icing and deicing applications of the photothermal conversion materials [J]. Prog. Org. Coat., 2023, 184: 107834
7 Wu Y L, Dong L, Shu X, et al. Recent advancements in photothermal anti-icing/deicing materials [J]. Chem. Eng. J., 2023, 469: 143924
8 Jiang G, Chen L, Zhang S D, et al. Superhydrophobic SiC/CNTs coatings with photothermal deicing and passive anti-icing properties [J]. ACS Appl. Mater. Interfaces, 2018, 10: 36505
9 Hu J H, Jiang G. Superhydrophobic coatings on iodine doped substrate with photothermal deicing and passive anti-icing properties [J]. Surf. Coat. Technol., 2020, 402: 126342
10 Cheng T T, He R, Zhang Q H, et al. Magnetic particle-based super-hydrophobic coatings with excellent anti-icing and thermoresponsive deicing performance [J]. J. Mater. Chem., 2015, 3A: 21637
11 Wang J P, Zhang D H. One-dimensional nanostructured polyaniline: syntheses, morphology controlling, formation mechanisms, new features, and applications [J]. Adv. Polym. Technol., 2013, 32: E323
12 Beygisangchin M, Rashid S A, Shafie S, et al. Preparations, properties, and applications of polyaniline and polyaniline thin films-a review [J]. Polymers, 2021, 13: 2003
13 Yu C C, Xu L J, Zhang Y Y, et al. Polymer-based nanomaterials for noninvasive cancer photothermal therapy [J]. ACS Appl. Polym. Mater., 2020, 2: 4289
14 Li X, Yue D M, Liu F, et al. Acid-doped polyaniline membranes for solar-driven interfacial evaporation [J]. Korean J. Chem. Eng., 2023, 40: 223
15 Jing X S, Guo Z G. Fabrication of biocompatible super stable lubricant-immobilized slippery surfaces by grafting a polydimethylsiloxane brush: excellent boiling water resistance, hot liquid repellency and long-term slippery stability [J]. Nanoscale, 2019, 11: 8870
doi: 10.1039/c9nr01556f pmid: 31012900
16 Tan X H, Zhang Y Z, Liu X Y, et al. Employing micro pyramidal holes and porous nanostructures for enhancing the durability of lubricant-infused surfaces in anti-icing [J]. Surf. Coat. Technol., 2021, 405: 126568
17 Zhang M L, Liu Q, Chen R R, et al. Lubricant-infused coating by double-layer ZnO on aluminium and its anti-corrosion performance [J]. J. Alloy. Compd., 2018, 764: 730
18 Wang N, Xiong D S, Lu Y, et al. Design and fabrication of the lyophobic slippery surface and its application in anti-icing [J]. J. Phys. Chem., 2016, 120C: 11054
19 da Silva J E P, Temperini M L A, de Torresi S I C. Relation between structure and homogeneity of polyaniline blends by infrared and Raman spectroscopies [J]. Synth. Met, 2003, 135-136: 133
20 Rajagopalan R, Iroh J O. Characterization of polyaniline-polypyrrole composite coatings on low carbon steel: a XPS and infrared spectroscopy study [J]. Appl. Surf. Sci., 2003, 218: 58
21 Trchová M, Stejskal J, Prokeš J. Infrared spectroscopic study of solid-state protonation and oxidation of polyaniline [J]. Synth. Met., 1999, 101: 840
22 Jia Y, Meng F Z, Yang J X, et al. Enhanced thermal conductivity of epoxy polymer alloys blend with fluorine-contained hybrid silicon dioxide [J]. J. Polym. Res., 2022, 29: 331
23 Sreedhar B, Sairam M, Chattopadhyay D K, et al. Thermal and XPS studies on polyaniline salts prepared by inverted emulsion polymerization [J]. J. Appl. Polym. Sci., 2006, 101: 499
24 Piłkowski M, Morgiante G, Myśliwiec J, et al. Environmental testing of hydrophobic fluorosilane-modified substrates [J]. Surf. Interfaces, 2021, 23: 100987
25 Xu Q F, Liu Y, Lin F J, et al. Superhydrophobic TiO2-polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties [J]. ACS Appl. Mater. Interfaces, 2013, 5: 8915
26 Liu Y, Shao Y W, Wang Y Q, et al. An abrasion-resistant, photothermal, superhydrophobic anti-icing coating prepared by polysiloxane-modified carbon nanotubes and fluorine-silicone resin [J]. Colloids Surf., 2022, 648A: 129335
27 Lian Y C, Liang F Y, He J C, et al. Research progress on preparation process of superhydrophobic polytetrafluoroethylene [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 231
27 (连衍成, 梁富源, 贺建超 等. 超疏水聚四氟乙烯材料制备工艺的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 231)
doi: 10.11902/1005.4537.2022.176
28 He H, Guo Z G. Superhydrophobic materials used for anti-icing Theory, application, and development [J]. iScience, 2021, 24: 103357
29 Shirtcliffe N J, McHale G, Atherton S, et al. An introduction to superhydrophobicity [J]. Adv. Colloid Interface Sci., 2010, 161: 124
30 Zhang M, Chen P, Li J C, et al. Water-repellent and corrosion resistance properties of epoxy-resin-based slippery liquid-infused porous surface [J]. Prog. Org. Coat., 2022, 172: 107152
31 Grundmeier G, Schmidt W, Stratmann M. Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation [J]. Electrochim. Acta, 2000, 45: 2515
32 Song Q H, Zhang Y F, Li Q, et al. Corrosion electrochemical behavior of arc sprayed Al coatings [J]. Dig. J. Nanomater. Bios., 2022, 17: 825
33 Yuan S C, Wu Y F, Xu C H, et al. Influence of polyhydroxy hyperdispersant on anti-corrosion property of waterborne epoxy coatings [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 289
33 (袁世成, 吴艳峰, 徐长慧 等. 多羟基超分散剂对水性环氧涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 289)
doi: 10.11902/1005.4537.2022.292
34 Boinovich L B, Emelyanenko A M. Anti-icing potential of superhydrophobic coatings [J]. Mendeleev Commun., 2013, 23: 3
35 Zhang F, Xu D, Zhang D W, et al. A durable and photothermal superhydrophobic coating with entwinned CNTs-SiO2 hybrids for anti-icing applications [J]. Chem. Eng. J., 2021, 423: 130238
36 Ruan M, Zhan Y L, Wu Y S, et al. Preparation of PTFE/PDMS superhydrophobic coating and its anti-icing performance [J]. RSC Adv., 2017, 7: 41339
37 Wu B R, Cui X, Jiang H Y, et al. A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances [J]. J. Colloid Interface Sci., 2021, 590: 301
[1] 姜伯晨, 类延华, 张玉良, 李晓峰, 刘涛, 董丽华. 功能性超疏水涂层在极地抗冰领域的应用研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 1-14.