Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (3): 815-822     CSTR: 32134.14.1005.4537.2023.210      DOI: 10.11902/1005.4537.2023.210
  研究报告 本期目录 | 过刊浏览 |
基于布拉格光纤光栅的铝合金应力腐蚀裂纹扩展监测技术
岑远遥1, 廖光萌1, 朱玉琴1,2, 赵方超1,2, 刘聪1,2(), 何建新1,2, 周堃1,2
1.西南技术工程研究所装备环境工程研究中心 环境效应与防护重庆市重点实验室 重庆 400050
2.国防科技工业自然环境试验研究中心 重庆 400050
Monitoring Technology for Stress Corrosion Crack Propagation of Al-alloy Based on Optical Fiber Bragg Grating
CEN Yuanyao1, LIAO Guangmeng1, ZHU Yuqin1,2, ZHAO Fangchao1,2, LIU Cong1,2(), HE Jianxin1,2, ZHOU Kun1,2
1. Environmental Effects and Protection of Chongqing Key Laboratory, Equipment Environmental engineering Research Center, Southwest Institute of Technology and Engineering, Chongqing 400050, China
2. National Defense Science and Technology Industry Natural Environment Test and Research Center, Chongqing 400050, China
引用本文:

岑远遥, 廖光萌, 朱玉琴, 赵方超, 刘聪, 何建新, 周堃. 基于布拉格光纤光栅的铝合金应力腐蚀裂纹扩展监测技术[J]. 中国腐蚀与防护学报, 2024, 44(3): 815-822.
Yuanyao CEN, Guangmeng LIAO, Yuqin ZHU, Fangchao ZHAO, Cong LIU, Jianxin HE, Kun ZHOU. Monitoring Technology for Stress Corrosion Crack Propagation of Al-alloy Based on Optical Fiber Bragg Grating[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 815-822.

全文: PDF(3505 KB)   HTML
摘要: 

为监测装备服役过程中应力腐蚀裂纹扩展,以预制裂纹的高强度铝合金双悬臂试样为研究对象,对应力腐蚀裂纹扩展开展研究。首先,阐述了应力腐蚀裂纹扩展机理,通过Matlab仿真确定了试样应力腐蚀裂纹扩展尖端x方向、y方向应变与裂纹长度关系为线性关系;采用Abaqus有限元仿真进一步确定了裂纹扩展尖端应力集中区域,确定出布置光纤距裂纹尖端为10和15 mm;针对布拉格光纤光栅应力腐蚀裂纹扩展感知技术进行研究,确定出光栅温度补偿模型;最后,对腐蚀裂纹扩展中布拉格光纤光栅传感器进行标定裂纹长度与布拉格光纤光栅传感器波长变化量之间的关联关系,结果表明裂纹长度与波长变化量相关性分别为R2 = 0.9893、R2 = 0.9870;在海南万宁搭建了户外暴露试验系统,通过组网实现铝合金应力腐蚀裂纹扩展原位监测,监测数据表明在采用温度补偿后,靠近裂纹尖端10 mm布置的传感器测量误差仅2.61%,监测结果可为装备的服役提供数据支撑。

关键词 布拉格光纤光栅应力腐蚀裂纹扩展裂纹监测    
Abstract

In order to understand and monitor the process of stress corrosion crack propagation of engineering equipment in service, the study focuses on the propagation of stress corrosion cracks of a designed double cantilever specimen of high-strength Al-alloy with prefabricated crack. Firstly, the mechanism of stress corrosion crack propagation was described, and the linear relationship of the crack length with the variation of the strain in the x- and y-directions of the stress corrosion crack propagation tip was determined through Matlab simulation; The stress concentration area at the crack tip was further determined by Abaqus finite element simulation, afterwards, the distance between the position of optical fiber sensing probe and the crack tip was selected to be 10 and 15 mm respectively; The relevant sensing technology of stress corrosion crack propagation in fiber Bragg gratings was also studied, and then a grating temperature compensation model was proposed; Finally, the correlation between the crack length and the wavelength change of the fiber Bragg grating sensor during corrosion crack propagation was calibrated. The results showed that the correlation of the crack length and the wavelength change was R2 =0.9893 and R2 = 0.9870, respectively; Afterwards, an outdoor exposure test set was constructed in Wanning of Hainan Province, to achieve in-situ monitoring of stress corrosion crack propagation of Al-alloys through networking. The monitoring data showed that after adopting the suitable temperature compensation, the measurement error is only 2.61% for sensor positioned 10 mm near the crack tip, and the monitoring results can provide data support for the real operation of engineering equipment.

Key wordsfiber Bragg grating    stress corrosion    crack propagation    crack monitoring
收稿日期: 2023-07-03      32134.14.1005.4537.2023.210
ZTFLH:  TP212  
基金资助:国防技术基础研究(JSJT2022209××××);企业青年人才创新创意支持项目(QH202308)
通讯作者: 刘聪,E-mail:907125812@qq.com,研究方向为装备环境工程、装备腐蚀与防护
Corresponding author: LIU Cong, E-mail: 907125812@qq.com
作者简介: 岑远遥,男,1994年生,硕士,工程师
图1  应力腐蚀裂纹扩展进程示意图
图2  裂纹扩展坐标系
图3  DCB试样裂纹尖端垂直附近r点腐蚀裂纹扩展与应变关系
图4  光纤布拉格光栅传感原理
图5  DCB试样裂纹尖端应力场
图6  DCB试样光纤光栅布置
图7  FBG温度传感器标定模型
Order number

Crack length

mm

Wavelength offset of fiber grating No.1

nm

Wavelength offset of fiber grating No.2

nm

1000
21.212.06431.0704
31.472.22421.3701
41.773.57361.8384
52.214.72512.4091
62.465.02762.6031
表1  FBG传感器标定数据
图8  1号和2号FBG传感器标定模型
图9  光纤光栅温补前后数据
图10  模型与实测数据对比
1 Liu J A, Xie S S. Application and Development of Aluminum Alloys [M]. Beijing: Metallurgical Industry Press, 2004: 20
1 刘静安, 谢水生. 铝合金材料的应用与技术开发 [M]. 北京: 冶金工业出版社, 2004: 20
2 Wang B J, Luan J Y, Wang S D, et al. Research progress on stress corrosion cracking behavior of magnesium alloys [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 89
2 王保杰, 栾吉瑜, 王士栋 等. 镁合金应力腐蚀开裂行为研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 89
doi: 10.11902/1005.4537.2018.186
3 Li W J, Zhang H X, Zhang H Q, et al. Effect of temperature on stress corrosion behavior of Ti-alloy Ti80 in sea water [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 111
3 李文桔, 张慧霞, 张宏泉 等. 温度对钛合金应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 111
doi: 10.11902/1005.4537.2022.028
4 Liu B P, Zhang Z M, Wang J Q, et al. Review of stress corrosion crack initiation of nuclear structural materials in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 513
4 刘保平, 张志明, 王俭秋 等. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 513
doi: 10.11902/1005.4537.2021.130
5 Jiao Y, Zhang S H, Tan Y. Research progress on stress corrosion cracking of stainless steel for nuclear power plant in high-temperature and high-pressure water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 417
5 焦 洋, 张胜寒, 檀 玉. 核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 417
6 Liu D, Liu J, Huang F, et al. Corrosion fatigue crack propagation performance of DH36 steel in simulated service conditions for offshore engineering structures [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 959
6 刘 冬, 刘 静, 黄 峰 等. 海洋工程结构用钢服役环境模拟及DH36钢腐蚀疲劳裂纹扩展性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 959
7 Zhu R L, Zhang L T, Wang J Q, et al. Stress corrosion crack propagation behavior of elbow pipe of nuclear grade 316LN stainless steel in high temperature high pressure water [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 54
7 朱若林, 张利涛, 王俭秋 等. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为 [J]. 中国腐蚀与防护学报, 2018, 38: 54
doi: 10.11902/1005.4537.2017.006
8 Zhang Z, Wu X Q, Tan J B. Review of electrochemical noise technique for in situ monitoring of stress corrosion cracking [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 223
8 张 震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展 [J]. 中国腐蚀与防护学报, 2020, 40: 223
9 Jiang L, Zhang X Z, Wang J, et al. Real-time online detection of cutter wear based on fiber Bragg grating array [J]. Acta Opt. Sin., 2019, 39: 1206003
doi: 10.3788/AOS
9 蒋 磊, 张学智, 王 进 等. 基于光纤布拉格光栅阵列的刀头磨损实时在线检测 [J]. 光学学报, 2019, 39: 1206003
10 Kinet D, Mégret P, Goossen K W, et al. Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions [J]. Sensors, 2014, 14: 7394
doi: 10.3390/s140407394 pmid: 24763215
11 Sahota J K, Gupta N, Dhawan D. Fiber Bragg grating sensors for monitoring of physical parameters: a comprehensive review [J]. Opt. Eng., 2020, 59: 060901
12 Quan Z Q, Fang X Q, Xue G Z, et al. Strain transfer coupling mechanism of surface-bonded fiber Bragg grating sensor [J]. Chin. J. Lasers, 2020, 47: 0104004
12 权志桥, 方新秋, 薛广哲 等. 表面粘贴布拉格光纤光栅传感器的应变传递耦合机理研究 [J]. 中国激光, 2020, 47: 0104004
13 Güemes A, Fernández-López A, Díaz-Maroto P F, et al. Structural health monitoring in composite structures by fiber-optic sensors [J]. Sensors, 2018, 18: 1094
doi: 10.3390/s18041094
14 Sun L Y, Liu C C, Jiang M S, et al. Fatigue crack prediction method for aluminum alloy based on fiber Bragg grating array [J]. Chin. J. Lasers, 2021, 48: 1306003
doi: 10.3788/CJL
14 孙玲玉, 刘长超, 姜明顺 等. 基于光纤布拉格光栅阵列的铝合金疲劳裂纹预测方法 [J]. 中国激光, 2021, 48: 1306003
15 Okabe T, Yashiro S. Damage detection in holed composite laminates using an embedded FBG sensor [J]. Compos. Part A: Appl. Sci. Manuf., 2012, 43: 388
doi: 10.1016/j.compositesa.2011.12.009
16 Yashiro S, Okabe T. Estimation of fatigue damage in holed composite laminates using an embedded FBG sensor [J]. Compos. Part A: Appl. Sci. Manuf., 2011, 42: 1962
doi: 10.1016/j.compositesa.2011.08.021
17 Minakuchi S, Takeda N. Recent advancement in optical fiber sensing for aerospace composite structures [J]. Photonic Sens., 2013, 3: 345
doi: 10.1007/s13320-013-0133-4
18 He J J, Yang J S, Wang Y X, et al. Probabilistic model updating for sizing of hole-edge crack using fiber Bragg grating sensors and the high-order extended finite element method [J]. Sensors, 2016, 16(11): 1956
doi: 10.3390/s16111956
19 Chang Q, Yang W X, Zhao H, et al. A multi-sensor based crack propagation monitoring research [J]. Acta Aeronaut. Astronaut. Sin., 2020, 41: 223336
19 常 琦, 杨维希, 赵 恒 等. 基于多传感器的裂纹扩展监测研究 [J]. 航空学报, 2020, 41: 223336
20 Jia X, Hu X T, Song Y D. Calculation formula for stress intensity factors of CT specimens based on three dimensional finite element solutions [J]. Mater. Mech. Eng., 2015, 39(12): 30
20 贾 旭, 胡绪腾, 宋迎东. 基于三维有限元解的紧凑拉伸试样应力强度因子计算公式 [J]. 机械工程材料, 2015, 39(12): 30
21 Zhu L J. Research on sensing and mechanical properties of embedded optical fiber smart composite materials [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 32
21 朱路佳. 埋入式光纤智能复合材料传感与力学性能研究 [D]. 南京: 南京航空航天大学, 2018: 32
22 Li H, Zhu L Q, Liu F, et al. Strain transfer analysis and experimental research of surface-bonded bare FBG [J]. Chin. J. Sci. Instrum., 2014, 35: 1744
22 李 红, 祝连庆, 刘 锋 等. 裸光纤光栅表贴结构应变传递分析与实验研究 [J]. 仪器仪表学报, 2014, 35: 1744
23 Wu Z H. Simulation study on crack propagation in the panel based on Abaqus [D]. Changsha: Central South University, 2013: 25
23 吴中怀. 基于Abaqus的薄壁板裂纹扩展仿真研究 [D]. 长沙: 中南大学, 2013: 25
[1] 李禅, 王庆田, 杨承刚, 张宪伟, 韩冬傲, 刘雨薇, 刘智勇. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[2] 原玉, 向勇, 李晨, 赵雪会, 闫伟, 姚二冬. CCUS系统中CO2 注入井管材腐蚀研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[3] 李双, 董立谨, 郑淮北, 吴铖川, 王洪利, 凌东, 王勤英. 飞机起落架用超高强钢应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[4] 郭昭, 李晗, 崔中雨, 王昕, 崔洪芝. A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[5] 李佳媛, 曾天昊, 刘友通, 吴晓春. 加铜4Cr16Mo马氏体不锈钢在应力作用下的腐蚀研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[6] 陈震宇, 朱忠亮, 马辰昊, 张乃强, 刘宇桐. 加载条件对镍基617合金在超临界水中腐蚀疲劳裂纹扩展速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1057-1063.
[7] 李文桔, 张慧霞, 张宏泉, 郝福耀, 仝宏韬. 温度对钛合金应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
[8] 刘冬, 刘静, 黄峰, 杜丽影. 海洋工程结构用钢服役环境模拟及DH36钢腐蚀疲劳裂纹扩展性能研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 959-965.
[9] 李柯萱, 宋龙飞, 李晓荣. pH值对X100管线钢在CO32-/HCO3-溶液中的电化学与应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 779-784.
[10] 刘宇桐, 陈震宇, 朱忠亮, 冯瑞, 包汉生, 张乃强. 2.25Cr1Mo钢及其焊接接头在高温水蒸气中的应力腐蚀开裂敏感性研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 647-654.
[11] 刘保平, 张志明, 王俭秋, 韩恩厚, 柯伟. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[12] 柳皓晨, 范林, 张海兵, 王莹莹, 唐鋆磊, 白雪寒, 孙明先. 钛合金深海应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[13] 刘冬, 刘静, 黄峰, 杜丽影, 彭文杰. 考虑应力比和门槛值的海水腐蚀疲劳裂纹扩展预测模型[J]. 中国腐蚀与防护学报, 2022, 42(1): 163-168.
[14] 张兹瑜, 吴欣强, 韩恩厚, 柯伟. 核电结构材料腐蚀疲劳裂纹扩展行为研究现状与进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 9-15.
[15] 余德远, 刘智勇, 杜翠薇, 黄辉, 林楠. 管线钢土壤应力腐蚀开裂研究进展及展望[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.