Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (6): 959-965          DOI: 10.11902/1005.4537.2021.336
  研究报告 本期目录 | 过刊浏览 |
海洋工程结构用钢服役环境模拟及DH36钢腐蚀疲劳裂纹扩展性能研究
刘冬1,2, 刘静1(), 黄峰1, 杜丽影2
1.武汉科技大学 省部共建耐火材料与冶金国家重点实验室 武汉 430081
2.宝钢股份中央研究院武钢有限技术中心 武汉 430080
Corrosion Fatigue Crack Propagation Performance of DH36 Steel in Simulated Service Conditions for Offshore Engineering Structures
LIU Dong1,2, LIU Jing1(), HUANG Feng1, DU Liying2
1. State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2. R&D Center of Wuhan Iron & Steel Co. Ltd., Baosteel Central Research Institute, Wuhan 430080, China
引用本文:

刘冬, 刘静, 黄峰, 杜丽影. 海洋工程结构用钢服役环境模拟及DH36钢腐蚀疲劳裂纹扩展性能研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 959-965.
Dong LIU, Jing LIU, Feng HUANG, Liying DU. Corrosion Fatigue Crack Propagation Performance of DH36 Steel in Simulated Service Conditions for Offshore Engineering Structures[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 959-965.

全文: PDF(3665 KB)   HTML
摘要: 

利用自行研制的海水腐蚀疲劳的试验装备开展了海洋工程结构用钢DH36在人造海水环境中不同应力比、频率、温度、流速下的腐蚀疲劳裂纹扩展速率特性,以及不同频率下腐蚀裂纹扩展过程中电化学行为研究。结果表明:应力比 (R) 越高,相同裂纹尖端应力场幅值条件下,疲劳裂纹扩展速率越快,疲劳裂纹扩展速率门槛值ΔKth越低。R=0.3和R=0.5时疲劳裂纹扩展速率相对R=0.1时的平均加速比例达115%和217%。温度越高疲劳裂纹扩展速率越快,30 ℃时,相对于最低温度 (5 ℃) 条件下的平均加速比例为20%。海水流速越快腐蚀疲劳裂纹扩展速率也越快,相对于静止海水环境,0.3 L/min时疲劳裂纹扩展速率的平均加速比例为19%,1 L/min时为34%,到最大流速3 L/min为50%。不同频率下,空气介质中疲劳裂纹的扩展速率基本无差别,但海水介质中的扩展速率差别较大,频率越低腐蚀疲劳裂纹扩展速率越快。通过比较不同频率下腐蚀疲劳裂纹扩展 (CFCG) 速率与疲劳裂纹扩展 (FCG) 速率的相对加速比例,可以看出在10 Hz下腐蚀抑制裂纹扩展,而1和0.1 Hz腐蚀加速裂纹扩展,平均加速比例依次为47.8%和261.8%。腐蚀对疲劳裂纹扩展的加速作用可通过原位监控腐蚀疲劳裂纹扩展过程中裂纹尖端区域电化学腐蚀行为得以量化。

关键词 腐蚀疲劳裂纹扩展速率应力比频率温度流速    
Abstract

The corrosion fatigue crack growth (CFCG) of DH36 steel in artificial seawater was studied via a home-made test set, which can accurately control the load, stress ratio, frequency, temperature, flow rate, pH value, ion concentration, and other factors of the artificial seawater, meanwhile, electrochemical monitoring of the whole process could be applied. The results show that the higher the stress ratio R, the faster the CFCG rate. The average acceleration ratio of CFCG rate by R=0.3 and R=0.5 is 115% and 217% of that by R=0.1 respectively. On the other hand, the CFCG rate becomes faster with the increase of temperature. The average acceleration ratio at 30 ℃ is only 20% of that at 5 ℃. The CFCG rate turns to be faster with the increase of seawater flow rate. The average acceleration ratio by flow rate of 0.3, 1 and 3 L/min, is 19%, 34% and 50% of that in static seawater, respectively. There is no difference in the fatigue crack growth (FCG) rate in air by changing test frequencies, but there is a great difference in the CFCG rate in seawater, namely the lower the frequency, the faster the CFCG rate. By comparing the CFCG rate with the FCG rate by different frequencies, it shows that seawater corrosion can inhibit the crack growth to certain extent at 10 Hz, but accelerates the crack growth at 1 and 0.1 Hz with an average acceleration ratio of 47.8% and 261.8%. The acceleration effect of corrosion on fatigue crack growth can be quantified by in-situ monitoring the electrochemical corrosion behavior at the crack tip during CFCG.

Key wordscorrosion fatigue crack growth rate    stress ratio    frequency    temperature    flow rate
收稿日期: 2021-11-25     
ZTFLH:  TG172.5  
基金资助:国家自然科学基金(51871172);中央指导地方科技发展专项(ZYDD2018026)
作者简介: 刘冬,男,1985年生,博士生,高级工程师
图1  海水腐蚀疲劳裂纹扩展速率试验装备示意图
图2  不同应力比下DH36钢da/dN-ΔK曲线
EnvironmentRf / HzT / ℃V / L·min-1CnΔKth / MPa·m0.5
Seawater0.152304.712×10-103.7339.15
Seawater0.352302.631×10-104.2487.79
Seawater0.552301.690×10-104.5386.07
Seawater0.55502.089×10-93.286---
Seawater0.551001.618×10-93.405---
Seawater0.552001.564×10-93.431---
Seawater0.553002.877×10-93.247---
Seawater0.552005.926×10-103.628---
Seawater0.55200.32.111×10-93.288---
Seawater0.552018.781×10-92.808---
Seawater0.552036.722×10-92.949---
Seawater0.50.12001.941×10-83.006---
Seawater0.512001.573×10-82.839---
Seawater0.5102002.208×10-93.271---
Air0.50.12004.629×10-93.000---
Air0.512002.560×10-93.263---
Air0.5102004.945×10-93.068---
表1  不同实验条件下腐蚀疲劳裂纹扩展速率Paris公式及门槛值ΔKth
图3  不同温度下DH36钢da/dN-ΔK曲线
图4  不同流速下DH36钢da/dN-ΔK曲线
图5  不同加载频率空气和海水环境下DH36钢da/dN-ΔK曲线
f / HzFCG rate / 10-6 mm·cycle-1CFCG rate / 10-6 mm·cycle-1Relative acceleration ratio η / %
101520251015202510152025
105.7820.0648.5096.174.1215.5239.7882.54-28.74-22.63-17.98-14.17
14.6917.6145.0393.267.6626.4963.87126.3963.3050.4041.8435.52
0.14.6017.9246.9899.2419.6866.58158.10309.20327.41271.62236.51211.57
表2  不同频率及ΔR下腐蚀环境相对空气环境下DH36钢疲劳裂纹扩展速率加速比例
图6  不同频率下腐蚀电位和裂纹长度随腐蚀时间的变化曲线
图7  不同裂纹扩展长度区间腐蚀产物
[1] Liu W, Wang J. Environmental impact of material corrosion research progress in marine splash zone [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 504
[1] (刘薇, 王佳. 海洋浪溅区环境对材料腐蚀行为影响的研究进展 [J]. 中国腐蚀与防护学报, 2010, 30: 504)
[2] Zhou Y, Zhang H B, Du M, et al. Effect of cathodic potentials on hydrogen embrittlement of 1000 MPa grade high strength steel in simulated deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 409
[2] (周宇, 张海兵, 杜敏 等. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 409)
[3] Li Z Y, Wang G, Luo S W, et al. Early corrosion behavior of EH36 ship plate steel in tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 463
[3] (李子运, 王贵, 罗思维 等. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 463)
[4] Ouyang H, Liu J Z, Su X Y, et al. The effect of stress ratio on fatigue crack growth rates [J]. Chin. J. Solid Mech., 1984, (4): 577
[4] (欧阳辉, 刘俊洲, 苏小燕 等. 应力比R对疲劳裂纹扩展速率的影响 [J]. 固体力学学报, 1984, (4): 577)
[5] Matlock D K, Edwards G R, Olson D L, et al. Effect of sea water on the fatigue crack propagation characteristics of welds for offshore structures [J]. J. Mater. Eng., 1987, 9: 25
doi: 10.1007/BF02833784
[6] Meng X Q, Lin Z Y, Wang F F. Investigation on corrosion fatigue crack growth rate in 7075 aluminum alloy [J]. Mater. Des., 2013, 51: 683
doi: 10.1016/j.matdes.2013.04.097
[7] Wu S C, Li C H, Zhang W, et al. Recent research progress on mechanisms and models of fatigue crack growth for metallic materials [J]. Chin. J. Solid Mech., 2019, 40: 489
[7] (吴圣川, 李存海, 张文 等. 金属材料疲劳裂纹扩展机制及模型的研究进展 [J]. 固体力学学报, 2019, 40: 489)
[8] Igwemezie V, Mehmanparast A. Waveform and frequency effects on corrosion-fatigue crack growth behaviour in modern marine steels [J]. Int. J. Fatigue, 2020, 134: 105484
doi: 10.1016/j.ijfatigue.2020.105484
[9] Wang R. A fracture model of corrosion fatigue crack propagation of aluminum alloys based on the material elements fracture ahead of a crack tip [J]. Int. J. Fatigue, 2008, 30: 1376
doi: 10.1016/j.ijfatigue.2007.10.007
[10] Kang D H, Lee J K, Kim T W. Corrosion fatigue crack propagation in a heat affected zone of high-performance steel in an underwater sea environment [J]. Eng. Failure Anal., 2011, 18: 557
doi: 10.1016/j.engfailanal.2010.08.019
[11] Chemin A, Spinelli D, Filho W B, et al. Corrosion fatigue crack growth of 7475 T7351 aluminum alloy under flight simulation loading [J]. Procedia Eng., 2015, 101: 85
doi: 10.1016/j.proeng.2015.02.012
[12] Jeong D, Lee S, Seo I, et al. Effect of applied potential on fatigue crack propagation behavior of Fe24Mn steel in seawater [J]. Met. Mater. Int., 2015, 21: 14
doi: 10.1007/s12540-015-1003-y
[13] Liao X X, Huang Y M, Qiang B, et al. Corrosion fatigue tests in synthetic seawater with constant temperature liquid circulating system [J]. Int. J. Fatigue, 2020, 135: 105542
doi: 10.1016/j.ijfatigue.2020.105542
[14] Kang D H, Lee J K, Kim T W. Corrosion fatigue crack propagation of high-strength steel HSB800 in a seawater environment [J]. Procedia Eng., 2011, 10: 1170
doi: 10.1016/j.proeng.2011.04.195
[15] Elbert W. The significance of fatigue crack closure [A]. Damage Tolerance in Aircraft Structures: A Symposium Presented at the Seventy-third Annual Meeting America Society for Testing and Materials, Toronto, Ontario, Canada, 21-26 June 1970 [C]. Toronto, 1971: 230
[16] Stock S R, Langøy M A. Fatigue-crack growth in Ti-6Al-4V-0.1Ru in air and seawater: part I. Design of experiments, assessment, and crack growth-rate curves [J]. Metall. Mater. Trans., 2001;32A: 2297
[17] Menan F, Henaff G. Influence of frequency and waveform on corrosion fatigue crack propagation in the 2024-T351 aluminium alloy in the S-L orientation [J]. Mater. Sci. Eng., 2009, 519A: 70.
[18] Wang P Q, Cui G C. A study on effect of carrier frequency on corrosion fatigue crack growth rate [J]. J. Mech. Strength, 1992, 11(1): 74
[18] (王蒲全, 崔广椿. 加载频率对腐蚀疲劳裂纹扩展速率影响的研究 [J]. 机械强度, 1992, 11(1): 74)
[19] Menan F, Henaff G. Influence of frequency and exposure to a saline solution on the corrosion fatigue crack growth behavior of the aluminum alloy 2024 [J]. Int. J. Fatigue, 2009, 31: 1684
doi: 10.1016/j.ijfatigue.2009.02.033
[1] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[2] 陈震宇, 朱忠亮, 马辰昊, 张乃强, 刘宇桐. 加载条件对镍基617合金在超临界水中腐蚀疲劳裂纹扩展速率的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1057-1063.
[3] 陈翰林, 马力, 黄国胜, 杜敏. pH值、温度和盐度对B30铜镍合金在海水中成膜的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 481-493.
[4] 张睿, 崔宇, 刘莉, 王福会. 深水压力-流速交互作用下Al-Zn-In牺牲阳极的自腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 329-336.
[5] 黄家和, 袁曦, 陈文, 闫文静, 金正宇, 柳海宪, 刘宏芳, 刘宏伟. 温度对CO2饱和页岩气压裂液环境中N80和TP125V钢腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 251-260.
[6] 李文桔, 张慧霞, 张宏泉, 郝福耀, 仝宏韬. 温度对钛合金应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
[7] 陈翰林, 马力, 黄国胜, 杜敏. 溶解氧和流速对B30铜镍合金在海水中成膜的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 724-732.
[8] 江荣, 张悦, 张磊成, 高希光, 宋迎东. 直接烧结SiC循环氧化行为的试验研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 249-257.
[9] 刘冬, 刘静, 黄峰, 杜丽影, 彭文杰. 考虑应力比和门槛值的海水腐蚀疲劳裂纹扩展预测模型[J]. 中国腐蚀与防护学报, 2022, 42(1): 163-168.
[10] 高浩东, 崔宇, 刘莉, 孟凡帝, 刘叡, 郑宏鹏, 王福会. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 39-50.
[11] 胡慧慧, 陈长风. 温度影响席夫碱缓蚀剂吸附的机理研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 786-794.
[12] 徐桂芳, 李园, 雷玉成, 朱强. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[13] 任莹, 赵会军, 周昊, 张建伟, 刘雯, 杨足膺, 王磊. 粒径和温度对20号钢冲刷腐蚀协同作用的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 508-516.
[14] 崔浩燃, 梁平, 史艳华, 杨众魁, 韩利. 脱硝剂浓度对S2205不锈钢耐蚀性及其临界点蚀温度的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[15] 冉斗, 孟惠民, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.