Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (3): 781-788     CSTR: 32134.14.1005.4537.2023.193      DOI: 10.11902/1005.4537.2023.193
  研究报告 本期目录 | 过刊浏览 |
基于腐蚀预测和强度计算的油管服役寿命评估
张明1, 龚宁1, 张博1, 霍宏博2, 李浩男2, 钟显康3()
1.中海石油(中国)有限公司天津分公司 海洋石油高效开发国家重点实验室 天津 300459
2.西南石油大学石油与天然气工程学院 成都 610500
3.西安交通大学化学工程与技术学院 西安 710049
Evaluation of Tubing Service Life Based on Corrosion Prediction and Strength Calculation
ZHANG Ming1, GONG Ning1, ZHANG Bo1, HUO Hongbo2, LI Haonan2, ZHONG Xiankang3()
1. State Key Laboratory of Efficient Offshore Oil Development, Tianjin Branch of CNOOC, Tianjin 300459, China
2. School of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China
3. School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
引用本文:

张明, 龚宁, 张博, 霍宏博, 李浩男, 钟显康. 基于腐蚀预测和强度计算的油管服役寿命评估[J]. 中国腐蚀与防护学报, 2024, 44(3): 781-788.
Ming ZHANG, Ning GONG, Bo ZHANG, Hongbo HUO, Haonan LI, Xiankang ZHONG. Evaluation of Tubing Service Life Based on Corrosion Prediction and Strength Calculation[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 781-788.

全文: PDF(2956 KB)   HTML
摘要: 

以海上气井为例,首先建立井筒-地层有限元模型,对各级管柱的温度和Mises应力分布进行计算;然后,选用合适的CO2/H2S腐蚀预测模型计算油管的腐蚀速率。以油管的安全系数作为评价安全性能的指标,完成了油管服役寿命评估。结果表明:随着管柱由井口向地层的不断延伸,各级井筒的温度和Mises应力逐渐升高。在油管末端,温度和Mises应力均达到最大值,分别为207℃和447 MPa。井口油管的腐蚀速率最高,达到0.21 mm/a。在不采取任何防腐措施的情况下,油管服役至第24年时,井口处的抗拉安全系数低于安全阈值;当添加缓蚀剂且缓蚀效率为90%时,油管可安全服役超过50年。

关键词 服役寿命高温高压有限元分析腐蚀预测    
Abstract

In high-temperature and high-pressured environments containing CO2 and H2S, the failure risk of downhole string is extremely high, which seriously threatens the safety of production. Therefore, it is of great significance to evaluate the service life of tubular column. In this paper, taking offshore gas wells as an example, the Mises stress distribution and temperature distribution were obtained through the shaft-formation finite element model. Then, an appropriate CO2/H2S corrosion prediction model was used to calculate the corrosion rate of tubing. Finally, taking the safety factor of tubing as the evaluation criteria of safety performance, the evaluation of tubing service life is completed. The results showed that the Mises stress and temperature at all levels of wellbore increased with the increase of the running depth of tubular column. At the end of tubing, the maximum temperature and Mises stress are 207oC and 447 MPa, respectively. In addition, the corrosion rate of the wellhead tubing is the highest, reaching 0.21 mm/a, according to the operation results of the corrosion model. Based on the above results, the safe service life of the tubing without any anti-corrosion measures is only 24 a. However, when corrosion inhibitors are injected, tubing can be used safely for more than 50 a when the corrosion inhibition efficiency is up to 90%.

Key wordsservice life    high temperature and high pressure    finite element analysis    corrosion prediction
收稿日期: 2023-06-12      32134.14.1005.4537.2023.193
ZTFLH:  TG174  
通讯作者: 钟显康,E-mail: zhongxk@yeah.net,研究方向为油气田防腐防垢、氢能装备服役安全
Corresponding author: ZHONG Xiankang, E-mail: zhongxk@yeah.net
作者简介: 张 明,男,1981年生,高级工程师
图1  导热微元体示意图
图2  内压、外挤以及轴向力同时作用下的“三轴应力”示意图
图3  井身结构示意图
Natural gas relative densityNatural gas component / %

H2S

mg·m-3

CH4C2H6C3H8C4H10C5H12C6H14N2CO2
0.78372.4111.914.061.860.800.561.337.0746.31
0.76375.418.833.011.350.540.170.1910.4936.6
表1  深井管内天然气密度及其成分
图4  地层温度与深度关系图
图5  生产过程温度分布云图
图6  地层压力与深度关系图
图7  生产过程Mises应力分布云图
图8  油管腐蚀速率随井深变化曲线图
Group

Temperature

oC

Pressure

MPa

CO2H2SSimulated corrosion rate mm·a-1

Actual corrosion rate

mm·a-1

Error
11304616%0.007%0.03490.03238.0%
21804616%0.007%0.02260.02221.8%
表2  模型计算结果与实验结果对照表
图9  无任何防腐措施情况下油管的安全系数随井深变化图
图10  当缓蚀效率为90%的情况下油管的安全系数随井深变化图
1 Xing X S, Fan B T, Zhu X Y, et al. Corrosion characteristics of P110SS casing steel for ultra-deep well in artificial formation water with low H2S and high CO2 content [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 611
1 幸雪松, 范白涛, 朱新宇 等. 低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究 [J]. 中国腐蚀与防护学报, 2023, 43: 611
doi: 10.11902/1005.4537.2022.225
2 Zhou Z P, Wu D K, Zhang H F, et al. Tensile property of L80 steel in air at 25-350oC and its corrosion behavior in simulated casing service conditions at 150-350oC [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 601
2 周志平, 吴大康, 张宏福 等. 高温下L80钢的断裂机理及CO2/H2S模拟工况下的腐蚀行为 [J]. 中国腐蚀与防护学报, 2023, 43: 601
doi: 10.11902/1005.4537.2022.259
3 Feng Y R, Fu A Q, Wang J D, et al. Failure control and integrity technologies of tubing/casing string under complicated working conditions: Research progress and prospect [J]. Nat. Gas. Ind., 2020, 40(2): 106
3 冯耀荣, 付安庆, 王建东 等. 复杂工况油套管柱失效控制与完整性技术研究进展及展望 [J]. 天然气工业, 2020, 40(2): 106
4 Zhou H G, Shan Q S, Shen J X, et al. Failure analysis and treatment of electric submersible pump string in Tarim Oilfield [J]. Drill. Prod. Technol., 2015, 38(5): 102
4 周怀光, 单全生, 沈建新 等. 塔里木油田潜油电泵管柱失效分析及治理对策 [J]. 钻采工艺, 2015, 38(5): 102
5 Li K, Li T L, Shi D Y, et al. Effect of elemental sulfur on the corrosion of 825 alloy in high temperature and high pressure environment containing CO2/H2S [J]. Equip. Environ. Eng., 2020, 17(11): 10
5 李 科, 李天雷, 施岱艳 等. 元素硫对825合金在高温高压含CO2/H2S环境中腐蚀行为的影响 [J]. 装备环境工程, 2020, 17(11): 10
6 Li Y, Ji H F, Xing P J, et al. Theoretical solutions of temperature field and thermal stress field in wellbore of a gas well [J]. Acta. Petrol. Sin., 2021, 42: 84
6 李 勇, 纪宏飞, 邢鹏举 等. 气井井筒温度场及温度应力场的理论解 [J]. 石油学报, 2021, 42: 84
7 Li X C, Tang X Z, Xue J B, et al. Safety analysis of string strength in high pressure and high yield gas Well [J]. Sci. Technol. Eng., 2022, 22: 3049
7 李喜成, 唐习之, 薛继彪 等. 高压高产气井油管柱强度安全分析 [J]. 科学技术与工程, 2022, 22: 3049
8 Ding L L, Lian Z H, Chen S C, et al. Numerical simulation of wellbore temperature during high-pressure deep well kills [J]. Oil. Drill. Prod. Technol., 2011, 33(4): 15
8 丁亮亮, 练章华, 陈世春 等. 高压深井压井过程中井筒温度数值模拟 [J]. 石油钻采工艺, 2011, 33(4): 15
9 Deng X C. Establishing the differential equation of heat conduction in the spherical coordinate system [J]. J. Anhui. Inst. Technol., 1987, 6(4): 58
9 邓先琛. 对建立球面坐标系中的导热微分方程式探讨 [J]. 安徽工学院学报, 1987, 6(4): 58
10 Jia X X, Xu M H, Hu G H, et al. Numerical method for three-dimensional heat conduction in cylindrical and spherical coordinates [J]. J. Chongqing Univ. Technol. (Nat. Sci), 2014, 28(1): 33
10 贾欣鑫, 徐明海, 胡国华 等. 三维球、柱坐标系下导热微分方程的离散求解 [J]. 重庆理工大学学报(自然科学), 2014, 28(1): 33
11 Song H. Study and application of the transient wellbore temperature fields [J]. Oil. Drill. Prod. Technol., 1994, 16(2): 67
11 宋 辉. 井筒瞬态温度场研究与应用 [J]. 石油钻采工艺, 1994, 16(2): 67
12 Wang J J, Wang T T. Three-dimensional well tubular design improves margins in critical wells [J]. Foreign Oil Field Eng., 2010, 26(5): 11
12 王建军, 王同涛. 一种提高复杂井况下管柱设计系数的三轴应力方法 [J]. 国外油田工程, 2010, 26(5): 11
13 Yuan K, Yang M. Optimization and application of casing string strength design under high-temperature conditions [J]. China Petrol. Mach., 2023, 51(1): 133
13 袁 可, 杨 谋. 高温环境下套管柱强度设计优化及应用 [J]. 石油机械, 2023, 51(1): 133
14 Feng C Q. Research on CO2 corrosion prediction method and anti-corrosion Measure of gas well tubing [D]. Chengdu: Southwest Petroleum University, 2015
14 冯超齐. 气井油管CO2腐蚀预测方法与防腐措施研究 [D]. 成都: 西南石油大学, 2015
15 Liu W W. CO2 corrosion and prediction model for oil and gas transportation systems [D]. Beijing: China University of Petroleum, 2009
15 刘伟伟. 油田集输管道CO2腐蚀规律和预测模型研究 [D]. 北京: 中国石油大学, 2009
16 Zhang Z, Huang Y, Li Y J, et al. Safety evaluation of production casing considering corrosion in gas well with sustained casing pressure [J]. J. Southwest Petrol. Univ. (Sci. Technol. Ed.), 2014, 36(2): 171
16 张 智, 黄 熠, 李炎军 等. 考虑腐蚀的环空带压井生产套管安全评价 [J]. 西南石油大学学报(自然科学版), 2014, 36(2): 171
17 Wang J D, Lin Y H, Li Y F, et al. A study on tri-axial design coefficient based on seal integrity of premium connection [J]. J. Southwest Petrol. Univ. (Sci. Technol. Ed.), 2022, 44(4): 165
17 王建东, 林元华, 李玉飞 等. 基于特殊螺纹密封完整性的三轴设计系数研究 [J]. 西南石油大学学报(自然科学版), 2022, 44(4): 165
doi: 10.11885/j.issn.1674-5086.2020.05.19.01
18 Lu Y, Zhao J M, Zhang M, et al. Development of CO2/H2S corrosion inhibitors in the mixed water injection system of offshore oilfield in the Bohai Sea [J]. Surf. Technol., 2018, 47(10): 59
18 陆 原, 赵景茂, 张 茂 等. 渤海某油田混合注水系统CO2/H2S腐蚀缓蚀剂的开发 [J]. 表面技术, 2018, 47(10): 59
19 Cheng Y P, Li Z L, Liu Q Q, et al. Research progress of CO2 corrosion inhibitors under high temperature and high pressure conditions in oil and gas fields [J]. Corros. Sci. Prot. Technol., 2015, 27: 278
19 程远鹏, 李自力, 刘倩倩 等. 油气田高温高压条件下CO2腐蚀缓蚀剂的研究进展 [J]. 腐蚀科学与防护, 2015, 27: 278
[1] 凌东, 何坤, 余靓, 董立谨, 张华礼, 李玉飞, 王勤英, 张智. 高温高压CO2 环境中超级13Cr不锈钢点蚀有限元模拟[J]. 中国腐蚀与防护学报, 2024, 44(2): 303-311.
[2] 赵国仙, 刘冉冉, 丁浪勇, 张思琦, 郭梦龙, 王映超. 温度对5Cr钢在模拟油田高温高压环境中CO2 腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[3] 朱烨森, 蔡锟, 胡葆文, 夏云秋, 胡涛勇, 黄一. 海底管道CO2 腐蚀特性及预测模型研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1225-1236.
[4] 陈庆国, 唐全宏, 秦振杰, 李一凡, 李磊, 李轩鹏, 袁军涛, 苏航, 付安庆. “高温-结盐-CO2/O2”多因素耦合环境下热浸铝镀层腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 569-577.
[5] 周志平, 吴大康, 张宏福, 张磊, 李明星, 张志鑫, 钟显康. 高温下L80钢的断裂机理及CO2/H2S模拟工况下的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[6] 王莎莎, 马帅杰, 车琨, 杜艳霞. 机器学习在自然环境腐蚀评估与预测领域的应用现状[J]. 中国腐蚀与防护学报, 2023, 43(3): 441-451.
[7] 赵国仙, 王映超, 张思琦, 宋洋. H2S/CO2对J55钢腐蚀的影响机制[J]. 中国腐蚀与防护学报, 2022, 42(5): 785-790.
[8] 刘保平, 张志明, 王俭秋, 韩恩厚, 柯伟. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[9] 王炳钦, 张晓莲, 雍兴跃, 周欢, 高新华. 舰船海水管系中紫铜/钢制管道耦接后电偶腐蚀的数值模拟研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[10] 张兹瑜, 吴欣强, 韩恩厚, 柯伟. 核电结构材料腐蚀疲劳裂纹扩展行为研究现状与进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 9-15.
[11] 陈宣东, 章青, 顾鑫, 李星. 基于概率分析的钢筋混凝土结构服役寿命预测研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 673-678.
[12] 李兆登,崔振东,侯相钰,高丽丽,王维珍,尹建华. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.
[13] 朱若林, 张利涛, 王俭秋, 张志明, 韩恩厚. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[14] 刘静,李晓禄,朱崇伟,张涛,曾冠鑫,孟国哲,邵亚薇. 利用人工神经网络技术预测气田环境下316L不锈钢临界点蚀温度[J]. 中国腐蚀与防护学报, 2016, 36(3): 205-211.
[15] 向超,王家贞,付华萌,韩恩厚,张海峰,王俭秋,张志明. 几种高熵合金在核电高温高压水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(2): 107-112.