Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (3): 441-451     CSTR: 32134.14.1005.4537.2022.147      DOI: 10.11902/1005.4537.2022.147
  综合评述 本期目录 | 过刊浏览 |
机器学习在自然环境腐蚀评估与预测领域的应用现状
王莎莎, 马帅杰, 车琨, 杜艳霞()
北京科技大学新材料技术研究院 北京  100083
Application Status of Machine Learning in Field of Natural Environment Corrosion Assessment and Prediction
WANG Shasha, MA Shuaijie, CHE Kun, DU Yanxia()
Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(659 KB)   HTML
摘要: 

机器学习应用于腐蚀数据的分析及腐蚀预测,已成为腐蚀学科的重要发展方向。介绍了近年来机器学习在土壤、海水及大气三种自然环境腐蚀研究中的应用现状,对比了不同环境中采用的机器学习方法及研究结果,总结了目前机器学习在三种自然环境腐蚀研究中存在的问题,展望了在材料腐蚀领域机器学习的未来发展趋势。

关键词 机器学习腐蚀预测土壤环境海水环境大气环境    
Abstract

The application of machine learning in corrosion data analysis and corrosion prediction has become an important development direction of corrosion discipline in recent years. This paper introduces the application of machine learning in soil, sea water and atmosphere-corrosion research in recent years, compares the machine learning methods and research results for different environments, and summarizes the existing problems of machine learning in the corrosion research of three kinds of natural environments. The future development trend of machine learning in the field of material corrosion is prospected.

Key wordsmachine learning    corrosion prediction    soil environment    seawater environment    atmospheric environment
收稿日期: 2022-05-10      32134.14.1005.4537.2022.147
ZTFLH:  TP181  
通讯作者: 杜艳霞,E-mail:duyanxia@ustb.edu.cn,研究方向为阴极保护技术及交直流杂散电流干扰
Corresponding author: DU Yanxia, E-mail: duyanxia@ustb.edu.cn
作者简介: 王莎莎,女,1996年生,硕士生

引用本文:

王莎莎, 马帅杰, 车琨, 杜艳霞. 机器学习在自然环境腐蚀评估与预测领域的应用现状[J]. 中国腐蚀与防护学报, 2023, 43(3): 441-451.
WANG Shasha, MA Shuaijie, CHE Kun, DU Yanxia. Application Status of Machine Learning in Field of Natural Environment Corrosion Assessment and Prediction. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 441-451.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.147      或      https://www.jcscp.org/CN/Y2023/V43/I3/441

1 Wang C. Study on soil corrosion monitoring of substation in Zhejiang province [D]. Hangzhou: Zhejiang University of Technology, 2020
1 王 传. 浙江省变电站土壤腐蚀监测研究 [D]. 杭州: 浙江工业大学, 2020
2 Koch G, Varney J, Thompson N, et al. International measures of prevention, application, and economics of corrosion technologies study [A]. 2016 NACE International [C]. Houston, Texas: NACE
3 Hou B R, Lu D Z. Corrosion cost and preventive strategies in China [J]. Bull. Chin. Acad. Sci., 2018, 33: 601
3 侯保荣, 路东柱. 我国腐蚀成本及其防控策略 [J]. 中国科学院院刊, 2018, 33: 601
4 Zhu Z P, Wang L J, Pei F, et al. Evaluation of soil corrosivity for ground grid of substations in an area by factor analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 147
4 朱志平, 王磊静, 裴 锋 等. 因子分析法在变电站土壤腐蚀性评价中的应用 [J]. 中国腐蚀与防护学报, 2014, 34: 147
doi: 10.11902/1005.4537.2013.074
5 Scully J R. Editorial-Future frontiers in corrosion science and engineering, Part II: Managing the many stages of corrosion [J]. Corrosion, 2019, 75: 123
doi: 10.5006/3132
6 He Y D, Qi H B. An Introduction to Material Corrosion and Protection [M]. Beijing: Machinery Industry Press, 2005
6 何业东, 齐慧滨. 材料腐蚀与防护概论 [M]. 北京: 机械工业出版社, 2005
7 Xie J X, Su Y J, Xue D Z, et al. Machine learning for materials research and development [J]. Acta Metall. Sin., 2021, 57: 1343
doi: 10.11900/0412.1961.2021.00357
7 谢建新, 宿彦京, 薛德祯 等. 机器学习在材料研发中的应用 [J]. 金属学报, 2021, 57: 1343
doi: 10.11900/0412.1961.2021.00357
8 PRATAP A, SARDANA N. Machine learning-based image processing in materials science and engineering: A review [J]. Mater. Today: Proc., 2022, 62: 7341
9 Mi X X, Tang A T, Zhu Y C, et al. Research progress of machine learning in material science [J]. Mater. Rev., 2021, 35: 15115
9 米晓希, 汤爱涛, 朱雨晨 等. 机器学习技术在材料科学领域中的应用进展 [J]. 材料导报, 2021, 35: 15115
10 Kim J, Kang D, Kim S, et al. Catalyze materials science with machine learning [J]. ACS Mater. Lett., 2021, 3: 1151
11 Dogan A, Birant D. Machine learning and data mining in manufacturing [J]. Expert Syst. Appl., 2021, 166: 114060
doi: 10.1016/j.eswa.2020.114060
12 Miyazato I, Tanaka Y, Takahashi K. Accelerating the discovery of hidden two-dimensional magnets using machine learning and first principle calculations [J]. J. Phys.: Condens. Matter, 2018, 30: 06LT01
13 Fu H X, Zhao H. Application Design of MATLAB Neural Network [M]. Beijing: Machinery Industry Press, 2010: 83
13 傅荟璇, 赵 红. MATLAB神经网络应用设计 [M]. 北京: 机械工业出版社, 2010: 83
14 Donaldson R G, Kamstra M. Forecast combining with neural networks [J]. J. Forecasting, 1996, 15: 49
doi: 10.1002/(ISSN)1099-131X
15 Wei D Z. Research on urban air quality based on a BP neural network prediction model [D]. Wuhan: Huazhong University of Science and Technology, 2009
15 韦德志. 城市区域空气质量的BP神经网络预测研究 [D]. 武汉: 华中科技大学, 2009
16 Yu S H, Deng J. GDP prediction based on principal component analysis and Bayesian regularization BP neural network [J]. J. Hunan Univ. (Soc. Sci.), 2011, 25(6): 42
16 喻胜华, 邓 娟. 基于主成分分析和贝叶斯正则化BP神经网络的GDP预测 [J]. 湖南大学学报 (社会科学版), 2011, 25(6): 42
17 Luo S W, Liu Q B, Huang C Y, et al. Research progress on corrosion of shipboard steel in marine environment [J]. Guangzhou Chem. Ind., 2019, 47(13): 33
17 罗思维, 刘泉兵, 黄承勇 等. 船板钢在海洋环境下腐蚀研究进展 [J]. 广州化工, 2019, 47(13): 33
18 Zhi Y J. Data-driven prediction model for small sample data of metal materials atmospheric corrosion [D]. Beijing: University of Science and Technology Beijing, 2019
18 支元杰. 大气环境下小样本金属材料腐蚀的数据驱动预测模型 [D]. 北京: 北京科技大学, 2019
19 Dou X F. Overview of KNN algorithm [J]. Telecom World, 2018, (10): 273
19 窦小凡. KNN算法综述 [J]. 通讯世界, 2018, (10): 273
20 Weinberger K Q, Saul L K. Distance metric learning for large margin nearest neighbor classification [J]. J. Mach. Learn. Res., 2009, 10: 207
21 Li W B, Wang Y, Feng Y T, et al. The non-excavation corrosion prediction model of grounding grid based on particle swarm optimization extreme learning machine [J]. IOP Conf. Ser.: Earth Environ. Sci., 2021, 692: 022118
22 Li H T, Yuan S. Corrosion prediction of marine engineering materials based on genetic algorithm and BP neural network [J]. Mar. Sci., 2020, 44(10): 33
22 李海涛, 袁 森. 基于遗传算法和BP神经网络的海洋工程材料腐蚀预测研究 [J]. 海洋科学, 2020, 44(10): 33
23 Zhang P H, Xiao Y A, Zhao J C, et al. Application of GA-BP artificial neural network in seawater corrosion prediction of copper alloys [J]. Equip. Environ. Eng., 2021, 18(12): 73
23 张彭辉, 肖攸安, 赵建仓 等. GA-BP神经网络在铜合金海洋腐蚀预测中的应用 [J]. 装备环境工程, 2021, 18(12): 73
24 Li X, Yu J X, Miao C S, et al. Prediction of corrosion rate in marine environment based on support vector machine combining with genetic algorithm [J]. China Offshore Platform, 2018, 33(5): 56
24 李 响, 余建星, 苗春生 等. 基于遗传算法SVM的海洋环境腐蚀速率预测 [J]. 中国海洋平台, 2018, 33(5): 56
25 Xiang N R, Yan H, Wang W, et al. Prediction of metal corrosion rate based on GA-BP neural network [J]. J. Electric Power, 2018, 33: 48
25 向乃瑞, 闫 海, 王 炜 等. GA-BP神经网络预测金属腐蚀速率 [J]. 电力学报, 2018, 33: 48
26 Qin X X. Research on soil corrosion and protection of pipeline [D]. Qingdao: China University of Petroleum (East China), 2009
26 秦晓霞. 埋地管道土壤腐蚀性与防护研究 [D]. 青岛: 中国石油大学, 2009
27 Liang P, Du C W, Yu J, et al. Analysis of factors on soil corrosion for buried Q235 steel in Ku'erle region [J]. Corros. Sci. Prot. Technol., 2010, 22: 146
27 梁 平, 杜翠薇, 余 杰 等. Q235钢在库尔勒地区土壤腐蚀性的影响因素分析 [J]. 腐蚀科学与防护技术, 2010, 22: 146
28 Li L, Li X G, Xing S B, et al. Research on soil corrosion rate prediction of carbon steel in typical Chinese cities based on BP artificial neural network [J]. Corros. Sci. Prot. Technol., 2013, 25: 372
28 李 丽, 李晓刚, 邢士波 等. BP人工神经网络对国内典型地区碳钢土壤腐蚀的预测研究 [J]. 腐蚀科学与防护技术, 2013, 25: 372
29 Zha D G. Research on machine learning framework based on AMLF optimization algorithm [J]. J. Jiamusi Univ. (Nat. Sci. Ed.), 2022, 40(1): 56
29 查道贵. 基于AMLF优化算法的机器学习框架的技术研究 [J]. 佳木斯大学学报 (自然科学版), 2022, 40(1): 56
30 Ling X, Xu L S, Yu J P, et al. Prediction of corrosion rate in oil pipeline based on improved BP neural network [J]. Transd. Microsyst. Technol., 2021, 40(2): 124
30 凌 晓, 徐鲁帅, 余建平 等. 基于改进的BP神经网络的输油管道内腐蚀速率预测 [J]. 传感器与微系统, 2021, 40(2): 124
31 Liu J. Research on soil corrosion of 20# steel buried gas pipelines in Chongqing [D]. Chongqing: Chongqing University, 2013
31 刘 静. 重庆市20#钢质燃气埋地管道的土壤腐蚀研究 [D]. 重庆: 重庆大学, 2013
32 Wang W H, Shen S M, Yu X C. Review on research methods of soil corrosion for buried pipeline steels [J]. J. Nanjing Univ. Technol. (Nat. Sci. Ed.), 2008, 30(4): 105
32 王文和, 沈士明, 於孝春. 埋地管道钢土壤腐蚀研究方法进展 [J]. 南京工业大学学报 (自然科学版), 2008, 30(4): 105
33 Luo X H. Evaluation of soil corrosion grade based on IAHP and fuzzy grey theory [J]. Mater. Prot., 2019, 52(7): 54
33 罗小虎. 基于IAHP和模糊灰色理论的土壤腐蚀等级评价 [J]. 材料保护, 2019, 52(7): 54
34 Luo Z S, Wang W H, Wang X W, et al. Soil corrosion prediction of buried pipeline based on the model of RS-PSO-GRNN [J]. Mater. Prot., 2018, 51(8): 47
34 骆正山, 王文辉, 王小完 等. 基于RS-PSO-GRNN的埋地管道土壤腐蚀预测 [J]. 材料保护, 2018, 51(8): 47
35 Liang C J, Xie B, Liu Y Q, et al. Prediction of soil corrosion rate of buried pipeline based on KPCA-GWO-SVM [J]. Oil Gas Storage Transport., 2021, 40: 938
35 梁昌晶, 谢 波, 刘延庆 等. 基于KPCA-GWO-SVM的埋地管道土壤腐蚀速率预测 [J]. 油气储运, 2021, 40: 938
36 Guo Y Y. Study on corrosion prediction of Q235 steel from soil in Hainan substation based on artificial neural network [D]. Baoding: North China Electric Power University, 2016
36 郭阳阳. 基于神经网络的海南变电站土壤对Q235钢的腐蚀预测研究 [D]. 保定: 华北电力大学, 2016
37 Ding L, Rangaraju P, Poursaee A. Application of generalized regression neural network method for corrosion modeling of steel embedded in soil [J]. Soils Found., 2019, 59: 474
doi: 10.1016/j.sandf.2018.12.016
38 Qu L S, Li X G, Du C W, et al. Corrosion rate prediction model of carbon steel in regional soil based on BP artificial neural network [J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 1569
38 曲良山, 李晓刚, 杜翠薇 等. 运用BP人工神经网络方法构建碳钢区域土壤腐蚀预测模型 [J]. 北京科技大学学报, 2009, 31: 1569
39 Hou B R. Theory of Marine Corrosion Environment and its Application [M]. Beijing: Science Press, 1999
39 侯保荣. 海洋腐蚀环境理论及其应用 [M]. 北京: 科学出版社, 1999
40 Hu G. Study on submarine pipeline corrosion detection and corrosion prediction [D]. Chongqing: Chongqing University, 2007
40 胡 舸. 海底管线腐蚀检测与腐蚀预测的研究 [D]. 重庆: 重庆大学, 2007
41 Liu X Q. Investigation on the corrosion behavior and corrosion prediction model of engineering steels used in marine environment [D]. Qingdao: Institute of Oceanography, Chinese Academy of Sciences, 2004
41 刘学庆. 海洋环境工程钢材腐蚀行为与预测模型的研究 [D]. 青岛: 中国科学院海洋研究所, 2004
42 Ma L T, Dong H F, Zhu G, et al. Application and research of neural network in predicting metal corrosion rate in marine environment [J]. Mater. Prot., 2018, 51(9): 35
42 马良涛, 董海防, 朱 刚 等. 神经网络预测海洋环境下金属腐蚀速率的应用及研究 [J]. 材料保护, 2018, 51(9): 35
43 Wen Y F, Cai C Z, Liu X H, et al. Corrosion rate prediction of 3C steel under different seawater environment by using support vector regression [J]. Corros. Sci., 2009, 51: 349
doi: 10.1016/j.corsci.2008.10.038
44 Luo Z S, Qin Y, Zhang X S, et al. Prediction of external corrosion rate of marine pipelines based on LASSO-WOA-LSSVM [J]. Surf. Technol., 2021, 50(5): 245
44 骆正山, 秦 越, 张新生 等. 基于LASSO-WOA-LSSVM的海洋管线外腐蚀速率预测 [J]. 表面技术, 2021, 50(5): 245
45 Zhang X S, Chang Y G. Prediction of external corrosion rate of offshore oil and gas pipelines based on FA-BAS-ELM [J]. China Saf. Sci. J., 2022, 32(2): 99
45 张新生, 常潆戈. 基于FA-BAS-ELM的海洋油气管道外腐蚀速率预测 [J]. 中国安全科学学报, 2022, 32(2): 99
doi: 10.16265/j.cnki.issn1003-3033.2022.02.014
46 Wei X, Fu D M, Chen M D, et al. Data mining to effect of key alloying elements on corrosion resistance of low alloy steels in Sanya seawater environment Alloying Elements [J]. J. Mater. Sci. Technol., 2021, 64: 222
doi: 10.1016/j.jmst.2020.01.040
47 Diao Y P, Yan L C, Gao K W. Improvement of the machine learning-based corrosion rate prediction model through the optimization of input features [J]. Mater. Des., 2021, 198: 109326
doi: 10.1016/j.matdes.2020.109326
48 Zeng J J, Zhou X J, Wu J, et al. Research status of correlation and life prediction of atmospheric corrosion test of metal materials [J]. Corros. Sci. Prot. Technol., 2015, 27: 90
48 曾佳俊, 周学杰, 吴 军 等. 金属材料大气腐蚀试验相关性与寿命预测研究现状 [J]. 腐蚀科学与防护技术, 2015, 27: 90
49 Chen R. The evaluation of atmospheric corrosivity category and corrosion behavior among China Southern Power Grid region-Guangxi Zhuang Autonomous region and Guizhou Province [D]. Guangzhou: South China University of Technology, 2018
49 陈 日. 南方电网地区输电杆塔大气腐蚀等级评估及腐蚀行为研究-广西壮族自治区和贵州省 [D]. 广州: 华南理工大学, 2018
50 Ma X Y, Qu Z Y, Li C R. Application of BP artifical nural network for prediction of atmosphere corrosion of carbonsteel and low alloy steel [J]. Corros. Sci. Prot. Technol., 2002, 14: 52
50 马小彦, 屈祖玉, 李长荣. BP神经网络在碳钢及低合金钢大气腐蚀预测中的应用 [J]. 腐蚀科学与防护技术, 2002, 14: 52
51 Wang H T, Han E-H, Ke W. Gray model and gray relation analysis for atmospheric corrosion of carbon steel and low alloy steel [J]. Corros. Sci. Prot. Technol., 2006, 18: 278
51 王海涛, 韩恩厚, 柯 伟. 碳钢、低合金钢大气腐蚀的灰色模型预测及灰色关联分析 [J]. 腐蚀科学与防护技术, 2006, 18: 278
52 Ji Z G, Ma X B, Zhou K, et al. An improved atmospheric corrosion prediction model considering various environmental factors [J]. Corrosion, 2021, 77: 1178
doi: 10.5006/3879
53 Zhi Y J, Jin Z H, Lu L, et al. Improving atmospheric corrosion prediction through key environmental factor identification by random forest-based model [J]. Corros. Sci., 2021, 178: 109084
doi: 10.1016/j.corsci.2020.109084
54 Li Q, Xia X J, Pei Z B, et al. Long-term corrosion monitoring of carbon steels and environmental correlation analysis via the random forest method [J]. npj Mater. Degrad., 2022, 6: 1
doi: 10.1038/s41529-021-00211-3
55 Han D S, Li D. Forecast of atmosphere corrosion for aluminum alloys by RBF neural network [J]. Corros. Sci. Prot. Technol., 2009, 21: 245
55 韩德盛, 李 荻. 用RBF人工神经网络构建铝合金大气腐蚀预测模型 [J]. 腐蚀科学与防护技术, 2009, 21: 245
[1] 朱烨森, 蔡锟, 胡葆文, 夏云秋, 胡涛勇, 黄一. 海底管道CO2 腐蚀特性及预测模型研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1225-1236.
[2] 胡杰珍, 蓝文杰, 邓培昌, 吴敬权, 曾俊昊. E690钢在热带海洋大气环境下的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1140-1144.
[3] 邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[4] 王瑾, 宁培栋, 刘倩倩, 陈娜娜, 张新, 肖葵. 模拟海洋大气环境中镀锌钢的腐蚀行为和机理[J]. 中国腐蚀与防护学报, 2023, 43(3): 578-586.
[5] 程鹏, 刘静, 牟文广, 黄峰, 黄先球, 庞涛. 690 MPa级耐候桥梁钢焊接接头在模拟工业大气环境下的耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 95-103.
[6] 程鹏, 刘静, 黄峰, 黄先球, 庞涛. 690 MPa级耐候桥梁钢在模拟工业大气环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 563-572.
[7] 王永欣, 汪艺璇, 陈春林, 李祥, 贺南开, 李金龙. 具有“层中层”结构的Zr/[Al(Si)N/CrN]涂层制备及其在海水环境中腐蚀磨损特性[J]. 中国腐蚀与防护学报, 2022, 42(3): 345-357.
[8] 王炳钦, 张晓莲, 雍兴跃, 周欢, 高新华. 舰船海水管系中紫铜/钢制管道耦接后电偶腐蚀的数值模拟研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[9] 李振欣, 吕美英, 杜敏. 海水环境中组合电位极化对铁氧化菌腐蚀的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 211-217.
[10] 余德远, 刘智勇, 杜翠薇, 黄辉, 林楠. 管线钢土壤应力腐蚀开裂研究进展及展望[J]. 中国腐蚀与防护学报, 2021, 41(6): 737-747.
[11] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[12] 谭何灵,周成,刘希辉,曹国明,张菁. Cr对Q420钢在高盐度大气环境下耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(3): 267-372.
[13] 张飘飘,杨忠民,陈颖,王慧敏. 含铬耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 93-100.
[14] 刘静,李晓禄,朱崇伟,张涛,曾冠鑫,孟国哲,邵亚薇. 利用人工神经网络技术预测气田环境下316L不锈钢临界点蚀温度[J]. 中国腐蚀与防护学报, 2016, 36(3): 205-211.
[15] 唐晓,时春涛,曹光,李焰. 海岸土壤环境对油气管道局部腐蚀的影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 191-196.