|
|
微生物胞外聚合物引起的金属腐蚀的研究进展 |
柯楠, 倪莹莹, 何嘉淇, 柳海宪, 金正宇, 刘宏伟( ) |
中山大学化学工程与技术学院 南方海洋科学与工程广东省实验室(珠海) 珠海 519082 |
|
Research Progress of Metal Corrosion Caused by Extracellular Polymeric Substances of Microorganisms |
KE Nan, NI Yingying, HE Jiaqi, LIU Haixian, JIN Zhengyu, LIU Hongwei( ) |
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China |
引用本文:
柯楠, 倪莹莹, 何嘉淇, 柳海宪, 金正宇, 刘宏伟. 微生物胞外聚合物引起的金属腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(2): 278-294.
Nan KE,
Yingying NI,
Jiaqi HE,
Haixian LIU,
Zhengyu JIN,
Hongwei LIU.
Research Progress of Metal Corrosion Caused by Extracellular Polymeric Substances of Microorganisms[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 278-294.
1 |
Vigneron A, Head I M, Tsesmetzis N. Damage to offshore production facilities by corrosive microbial biofilms[J]. Appl. Microbiol. Biotechnol., 2018, 102: 2525
doi: 10.1007/s00253-018-8808-9
pmid: 29423635
|
2 |
Moran M A. The global ocean microbiome[J]. Science, 2015, 350: aac8455
doi: 10.1126/science.aac8455
|
3 |
Machuca L L, Jeffrey R, Melchers R E. Microorganisms associated with corrosion of structural steel in diverse atmospheres[J]. Int. Biodeterior. Biodegrad., 2016, 114: 234
doi: 10.1016/j.ibiod.2016.06.015
|
4 |
Makita H. Iron-oxidizing bacteria in marine environments: recent progresses and future directions[J]. World J. Microbiol. Biotechnol., 2018, 34: 110
doi: 10.1007/s11274-018-2491-y
|
5 |
Jia R, Unsal T, Xu D K, et al. Microbiologically influenced corrosion and current mitigation strategies: a state of the art review[J]. Int. Biodeterior. Biodegrad., 2019, 137: 42
doi: 10.1016/j.ibiod.2018.11.007
|
6 |
Rajala P, Huttunen-Saarivirta E, Bomberg M, et al. Corrosion and biofouling tendency of carbon steel in anoxic groundwater containing sulphate reducing bacteria and methanogenic archaea[J]. Corros. Sci., 2019, 159: 108148
doi: 10.1016/j.corsci.2019.108148
|
7 |
Khamis E, El-Rafey E, Gaber A M A, et al. Comparative study between green and red algae in the control of corrosion and deposition of scale in water systems[J]. Desalin. Water Treat., 2016, 57: 23571
doi: 10.1080/19443994.2015.1135480
|
8 |
Beech I B, Sunner J. Biocorrosion: towards understanding interactions between biofilms and metals[J]. Curr. Opin. Biotechnol., 2004, 15: 181
doi: 10.1016/j.copbio.2004.05.001
|
9 |
Dinh H T, Kuever J, Mußmann M, et al. Iron corrosion by novel anaerobic microorganisms[J]. Nature, 2004, 427: 829
doi: 10.1038/nature02321
|
10 |
Seviour T, Derlon N, Dueholm M S, et al. Extracellular polymeric substances of biofilms: Suffering from an identity crisis[J]. Water Res., 2019, 151: 1
doi: S0043-1354(18)30941-2
pmid: 30557778
|
11 |
Liu H W, Gu T Y, Asif M, et al. The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria[J]. Corros. Sci., 2017, 114: 102
doi: 10.1016/j.corsci.2016.10.025
|
12 |
Chan K Y, Xu L C, Fang H H P. Anaerobic electrochemical corrosion of mild steel in the presence of extracellular polymeric substances produced by a culture enriched in sulfate-reducing bacteria[J]. Environ. Sci. Technol., 2002, 36: 1720
doi: 10.1021/es011187c
|
13 |
Stadler R, Fuerbeth W, Harneit K, et al. First evaluation of the applicability of microbial extracellular polymeric substances for corrosion protection of metal substrates[J]. Electrochim. Acta, 2008, 54: 91
doi: 10.1016/j.electacta.2008.04.082
|
14 |
Moradi M, Song Z L, Xiao T. Exopolysaccharide produced by Vibrio neocaledonicus sp. as a green corrosion inhibitor: production and structural characterization[J]. J. Mater. Sci. Technol., 2018, 34: 2447
doi: 10.1016/j.jmst.2018.05.019
|
15 |
Jin J T, Wu G X, Zhang Z H, et al. Effect of extracellular polymeric substances on corrosion of cast iron in the reclaimed wastewater[J]. Bioresour. Technol., 2014, 165: 162
doi: 10.1016/j.biortech.2014.01.117
|
16 |
Gaines R H. Bacterial activity as a corrosive influence in the soil[J]. Ind. Eng. Chem., 1910, 2: 128
|
17 |
Kuehr C A H V W, van der Vlugt L S. The graphitization of cast iron as an electro biochemical process in anaerobic soils[J]. Water, 1934, 18: 147
|
18 |
Muyzer G, Stams A J M. The ecology and biotechnology of sulphate-reducing bacteria[J]. Nat. Rev. Microbiol., 2008, 6: 441
doi: 10.1038/nrmicro1892
pmid: 18461075
|
19 |
King R A, Miller J D A, Smith J S. Corrosion of mild steel by iron sulphides[J]. Br. Corros. J., 1973, 8: 137
doi: 10.1179/000705973798322251
|
20 |
Gu T Y. Theoretical modeling of the possibility of acid producing bacteria causing fast pitting biocorrosion[J]. J. Microb. Biochem. Technol., 2014, 6: 68
|
21 |
Thomsen U S, Meng R L C, Larsen J. Monitoring and risk assessment of microbiologically influenced corrosion in offshore pipelines[A]. Proceedings of the CORROSION 2016[C]. Vancouver: NACE, 2016: 7194
|
22 |
Meyer B. Approaches to prevention, removal and killing of biofilms[J]. Int. Biodeterior. Biodegrad., 2003, 51: 249
doi: 10.1016/S0964-8305(03)00047-7
|
23 |
Duan J Z, Wu S R, Zhang X J, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater[J]. Electrochim. Acta, 2008, 54: 22
doi: 10.1016/j.electacta.2008.04.085
|
24 |
Blackwood D J. An electrochemist perspective of microbiologically influenced corrosion[J]. Corros. Mater. Degrad., 2020, 1: 59
doi: 10.3390/cmd1010005
|
25 |
Javaherdashti R. Microbiologically Influenced Corrosion: An Engineering Insight[M]. London: Springer, 2008
|
26 |
AlAbbas F M, Williamson C, Bhola S M, et al. Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80)[J]. Int. Biodeterior. Biodegrad., 2013, 78: 34
doi: 10.1016/j.ibiod.2012.10.014
|
27 |
Dou W W, Liu J L, Cai W Z, et al. Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation[J]. Corros. Sci., 2019, 150: 258
doi: 10.1016/j.corsci.2019.02.005
|
28 |
Dou W W, Jia R, Jin P, et al. Investigation of the mechanism and characteristics of copper corrosion by sulfate reducing bacteria[J]. Corros. Sci., 2018, 144: 237
doi: 10.1016/j.corsci.2018.08.055
|
29 |
Huang G T, Chan K Y, Fang H H P. Microbiologically induced corrosion of 70Cu-30Ni alloy in anaerobic seawater[J]. J. Electrochem. Soc., 2004, 151: B434
doi: 10.1149/1.1756153
|
30 |
Cui L Y, Liu Z Y, Xu D K, et al. The study of microbiologically influenced corrosion of 2205 duplex stainless steel based on high-resolution characterization[J]. Corros. Sci., 2020, 174: 108842
doi: 10.1016/j.corsci.2020.108842
|
31 |
Huang L Y, Chang W W, Zhang D W, et al. Acceleration of corrosion of 304 stainless steel by outward extracellular electron transfer of Pseudomonas aeruginosa biofilm[J]. Corros. Sci., 2022, 199: 110159
doi: 10.1016/j.corsci.2022.110159
|
32 |
Pu Y A, Dou W W, Gu T Y, et al. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2020, 47: 10
doi: 10.1016/j.jmst.2020.02.008
|
33 |
Li J, Du C W, Liu Z Y, et al. Electrochemical studies of microbiologically influenced corrosion of X80 steel by nitrate-reducing Bacillus licheniformis under anaerobic conditions[J]. J. Mater. Sci. Technol., 2022, 118: 208
doi: 10.1016/j.jmst.2021.12.026
|
34 |
Juzeliūnas E, Ramanauskas R, Lugauskas A, et al. Influence of wild strain Bacillus mycoides on metals: from corrosion acceleration to environmentally friendly protection[J]. Electrochim. Acta, 2006, 51: 6085
doi: 10.1016/j.electacta.2006.01.067
|
35 |
Wang H, Ju L K, Castaneda H, et al. Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans [J]. Corros. Sci., 2014, 89: 250
doi: 10.1016/j.corsci.2014.09.005
|
36 |
Yue Y Y, Lv M Y, Du M. The corrosion behavior and mechanism of X65 steel induced by iron-oxidizing bacteria in the seawater environment[J]. Mater. Corros., 2019, 70: 1852
|
37 |
Dong Y Q, Jiang B T, Xu D K, et al. Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1[J]. Bioelectrochemistry, 2018, 123: 34
doi: 10.1016/j.bioelechem.2018.04.014
|
38 |
Cai D L, Wu J Y, Chai K. Microbiologically influenced corrosion behavior of carbon steel in the presence of marine bacteria Pseudomonas sp. and Vibrio sp.[J]. ACS Omega, 2021, 6: 3780
doi: 10.1021/acsomega.0c05402
|
39 |
Liu H W, Fu C Y, Gu T Y, et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water[J]. Corros. Sci., 2015, 100: 484
doi: 10.1016/j.corsci.2015.08.023
|
40 |
Xi G F, Zhao X D, Wang S, et al. Synergistic effect between sulfate-reducing bacteria and pseudomonas aeruginosa on corrosion behavior of Q235 steel[J]. Int. J. Electrochem. Sci., 2020, 15: 361
doi: 10.20964/2020.01.38
|
41 |
Bahram M, Netherway T. Fungi as mediators linking organisms and ecosystems[J]. FEMS Microbiol. Rev., 2022, 46: fuab058
doi: 10.1093/femsre/fuab058
|
42 |
Zhang T S, Wang J L, Zhang G A, et al. The corrosion promoting mechanism of Aspergillus niger on 5083 aluminum alloy and inhibition performance of miconazole nitrate[J]. Corros. Sci., 2020, 176: 108930
doi: 10.1016/j.corsci.2020.108930
|
43 |
He J Q, Tan Y, Liu H X, et al. Extracellular polymeric substances secreted by marine fungus Aspergillus terreus: full characterization and detailed effects on aluminum alloy corrosion[J]. Corros. Sci., 2022, 209: 110703
doi: 10.1016/j.corsci.2022.110703
|
44 |
Qu Q, Li S L, Li L, et al. Adsorption and corrosion behaviour of Trichoderma harzianum for AZ31B magnesium alloy in artificial seawater[J]. Corros. Sci., 2017, 118: 12
doi: 10.1016/j.corsci.2017.01.005
|
45 |
Juzeliūnas E, Ramanauskas R, Lugauskas A, et al. Microbially influenced corrosion of zinc and aluminium – Two-year subjection to influence of Aspergillus niger [J]. Corros. Sci., 2007, 49: 4098
doi: 10.1016/j.corsci.2007.05.004
|
46 |
Dai X Y, Wang H, Ju L K, et al. Corrosion of aluminum alloy 2024 caused by Aspergillus niger [J]. Int. Biodeterior. Biodegrad., 2016, 115: 1
doi: 10.1016/j.ibiod.2016.07.009
|
47 |
Qu Q, Wang L, Li L, et al. Effect of the fungus, Aspergillus niger, on the corrosion behaviour of AZ31B magnesium alloy in artificial seawater[J]. Corros. Sci., 2015, 98: 249
doi: 10.1016/j.corsci.2015.05.038
|
48 |
Jirón-Lazos U, Corvo F, De la Rosa S C, et al. Localized corrosion of aluminum alloy 6061 in the presence of Aspergillus niger [J]. Int. Biodeterior. Biodegrad., 2018, 133: 17
doi: 10.1016/j.ibiod.2018.05.007
|
49 |
Bai Z H, Xiao K, Chen L H, et al. Corrosion inhibition of titanium by Paecilomyces variotii and Aspergillus niger in an aqueous environment[J]. Int. J. Electrochem. Sci., 2018, 13: 2033
doi: 10.20964/2018.02.70
|
50 |
Yu D, Kurola J M, Lähde K, et al. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes[J]. J. Environ. Manage., 2014, 143: 54
doi: 10.1016/j.jenvman.2014.04.025
pmid: 24837280
|
51 |
Woese C R, Kandler O, Wheelis M L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya[J]. Proc. Natl. Acad. Sci. USA, 1990, 87: 4576
doi: 10.1073/pnas.87.12.4576
pmid: 2112744
|
52 |
Leininger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006, 442: 806
doi: 10.1038/nature04983
|
53 |
Usher K M, Kaksonen A H, MacLeod I D. Marine rust tubercles harbour iron corroding archaea and sulphate reducing bacteria[J]. Corros. Sci., 2014, 83: 189
doi: 10.1016/j.corsci.2014.02.014
|
54 |
Chen S Q, Deng H, Li J R, et al. Study of E690 steel corrosion in seawater containing methanogenic archaea[J]. J. Mater. Eng. Perform., 2022, 31: 9129
doi: 10.1007/s11665-022-06919-w
|
55 |
Qian H C, Ma L W, Zhang D W, et al. Microbiologically influenced corrosion of 304 stainless steel by halophilic archaea Natronorubrum tibetense [J]. J. Mater. Sci. Technol., 2020, 46: 12
doi: 10.1016/j.jmst.2019.04.047
|
56 |
Qian H C, Zhang J T, Cui T Y, et al. Influence of NaCl concentration on microbiologically influenced corrosion of carbon steel by halophilic archaeon Natronorubrum tibetense [J]. Bioelectrochemistry, 2021, 140: 107746
doi: 10.1016/j.bioelechem.2021.107746
|
57 |
Suarez E M, Lepkova K, Kinsella B, et al. Aggressive corrosion of steel by a thermophilic microbial consortium in the presence and absence of sand[J]. Int. Biodeterior. Biodegrad., 2019, 137: 137
doi: 10.1016/j.ibiod.2018.12.003
|
58 |
Qian H C, Liu S Y, Wang P, et al. Investigation of microbiologically influenced corrosion of 304 stainless steel by aerobic thermoacidophilic archaeon Metallosphaera cuprina [J]. Bioelectrochemistry, 2020, 136: 107635
doi: 10.1016/j.bioelechem.2020.107635
|
59 |
Vandana, Monika P, Surajit D. Bacterial extracellular polymeric substances: Biosynthesis and interaction with environmental pollutants[J]. Chemosphere, 2023, 332: 138876
doi: 10.1016/j.chemosphere.2023.138876
|
60 |
Yoon H S, Muller K M, Sheath R G, et al. Defining the major lineages of red algae (Rhodophyta)[J]. J. Phycol., 2006, 42: 482
doi: 10.1111/jpy.2006.42.issue-2
|
61 |
De Muynck W, Ramirez A M, De Belie N, et al. Evaluation of strategies to prevent algal fouling on white architectural and cellular concrete[J]. Int. Biodeterior. Biodegrad., 2009, 63: 679
doi: 10.1016/j.ibiod.2009.04.007
|
62 |
Li L X, Liu W M, Liang T J, et al. The adsorption mechanisms of algae-bacteria symbiotic system and its fast formation process[J]. Bioresour. Technol., 2020, 315: 123854
doi: 10.1016/j.biortech.2020.123854
|
63 |
Mieszkin S, Callow M E, Callow J A. Interactions between microbial biofilms and marine fouling algae: a mini review[J]. Biofouling, 2013, 29: 1097
doi: 10.1080/08927014.2013.828712
pmid: 24047430
|
64 |
Selvarajan R, Sibanda T, Venkatachalam S, et al. Distribution, interaction and functional profiles of epiphytic bacterial communities from the rocky intertidal seaweeds, South Africa[J]. Sci. Rep., 2019, 9: 19835
doi: 10.1038/s41598-019-56269-2
pmid: 31882618
|
65 |
Kalnaowakul P, Xu D K, Rodchanarowan A. Accelerated corrosion of 316L stainless steel caused by Shewanella algae biofilms[J]. ACS Appl. Bio. Mater., 2020, 3: 2185
doi: 10.1021/acsabm.0c00037
pmid: 35025270
|
66 |
Khadraoui A, Khelifa A, Hachama K, et al. Synergistic effect of potassium iodide in controlling the corrosion of steel in acid medium by Mentha pulegium extract[J]. Res. Chem. Intermed., 2015, 41: 7973
doi: 10.1007/s11164-014-1870-8
|
67 |
Zheng D D, Wang G J. Preparation of algae extract as green corrosion inhibitor for Q235 steel in chloride ion solutions[J]. Int. J. Electrochem. Sci., 2021, 16: 210734
doi: 10.20964/2021.07.64
|
68 |
Khoukhi F, Kebbouche-Gana S, Djelali N E, et al. Efficiency evaluation of anti-corrosion treatment of carbon steel by extracts of red algae collected from mediterranean coast[J]. Rev. Chim., 2021, 72: 59
doi: 10.37358/RC.72.21.2
|
69 |
Benabbouha T, Nmila R, Siniti M, et al. The brown algae Cystoseira Baccata extract as a friendly corrosion inhibitor on carbon steel in acidic media[J]. SN Appl. Sci., 2020, 2: 662
doi: 10.1007/s42452-020-2492-y
|
70 |
Spavieri J, Allmendinger A, Kaiser M, et al. Antimycobacterial, antiprotozoal and cytotoxic potential of twenty-one brown algae (phaeophyceae) from British and Irish waters[J]. Phytother Res., 2010, 24: 1724
doi: 10.1002/ptr.3208
pmid: 20564461
|
71 |
Bakke R, Trulear M G, Robinson J A, et al. Activity of Pseudomonas aeruginosa in biofilms: steady state[J]. Biotechnol. Bioeng., 1984, 26: 1418
pmid: 18551671
|
72 |
Di Martino P. Extracellular polymeric substances, a key element in understanding biofilm phenotype[J]. AIMS Microbiol., 2018, 4: 274
doi: 10.3934/microbiol.2018.2.274
pmid: 31294215
|
73 |
Flemming H C, Wingender J, Griegbe T, et al. Physico-chemical properties of biofilms[M]. Amsterdam: Harwood Academic Publishers, 2000: 19
|
74 |
Nielsen P H, Jahn A, Palmgren R. Conceptual model for production and composition of exopolymers in biofilms[J]. Water Sci. Technol., 1997, 36: 11
doi: 10.2166/wst.1997.0002
|
75 |
Sheng G P, Yu H Q, Li X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review[J]. Biotechnol. Adv., 2010, 28: 882
doi: 10.1016/j.biotechadv.2010.08.001
|
76 |
Arcila J S, Buitrón G. Influence of solar irradiance levels on the formation of microalgae-bacteria aggregates for municipal wastewater treatment[J]. Algal Res., 2017, 27: 190
doi: 10.1016/j.algal.2017.09.011
|
77 |
Vu C H T, Chun S J, Seo S H, et al. Bacterial community enhances flocculation efficiency of Ettlia sp. by altering extracellular polymeric substances profile[J]. Bioresour. Technol., 2019, 281: 56
doi: 10.1016/j.biortech.2019.02.062
|
78 |
Jorand F, Zartarian F, Thomas F, et al. Chemical and structural (2D) linkage between bacteria within activated sludge flocs[J]. Water Res., 1995, 29: 1639
doi: 10.1016/0043-1354(94)00350-G
|
79 |
Poxon T L, Darby J L. Extracellular polyanions in digested sludge: measurement and relationship to sludge dewaterability[J]. Water Res., 1997, 31: 749
doi: 10.1016/S0043-1354(96)00319-3
|
80 |
Zhao L T, She Z L, Jin C J, et al. Characteristics of extracellular polymeric substances from sludge and biofilm in a simultaneous nitrification and denitrification system under high salinity stress[J]. Bioprocess. Biosyst. Eng., 2016, 39: 1375
doi: 10.1007/s00449-016-1613-x
|
81 |
Lin H J, Zhang M J, Wang F Y, et al. A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies[J]. J. Membr. Sci., 2014, 460: 110
doi: 10.1016/j.memsci.2014.02.034
|
82 |
Simões M, Simões L C, Vieira M J. A review of current and emergent biofilm control strategies[J]. LWT-Food Sci. Technol., 2010, 43: 573
doi: 10.1016/j.lwt.2009.12.008
|
83 |
Xiao R, Zheng Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications[J]. Biotechnol. Adv., 2016, 34: 1225
doi: S0734-9750(16)30105-7
pmid: 27576096
|
84 |
Fallahi A, Rezvani F, Asgharnejad H, et al. Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: a review[J]. Chemosphere, 2021, 272: 129878
doi: 10.1016/j.chemosphere.2021.129878
|
85 |
Koo H, Yamada K M. Dynamic cell-matrix interactions modulate microbial biofilm and tissue 3D microenvironments[J]. Curr. Opin. Cell Biol., 2016, 42: 102
doi: S0955-0674(16)30091-6
pmid: 27257751
|
86 |
Flemming H C, Wingender J, Szewzyk U, et al. Biofilms: an emergent form of bacterial life[J]. Nat. Rev. Microbiol., 2016, 14: 563
doi: 10.1038/nrmicro.2016.94
|
87 |
Sepehri A, Sarrafzadeh M H. Effect of nitrifiers community on fouling mitigation and nitrification efficiency in a membrane bioreactor[J]. Chem. Eng. Process.-Process Intensif., 2018, 128: 10
doi: 10.1016/j.cep.2018.04.006
|
88 |
Liu Y Q, Liu Y, Tay J H. The effects of extracellular polymeric substances on the formation and stability of biogranules[J]. Appl. Microbiol. Biotechnol., 2004, 65: 143
|
89 |
Shukla A, Mehta K, Parmar J, et al. Depicting the exemplary knowledge of microbial exopolysaccharides in a nutshell[J]. Eur. Polym. J., 2019, 119: 298
doi: 10.1016/j.eurpolymj.2019.07.044
|
90 |
Barcelos M C S, Vespermann K A C, Pelissari F M, et al. Current status of biotechnological production and applications of microbial exopolysaccharides[J]. Crit. Rev. Food Sci. Nutr., 2020, 60: 1475
doi: 10.1080/10408398.2019.1575791
pmid: 30740985
|
91 |
Baruah R, Das D, Goyal A. Heteropolysaccharides from lactic acid bacteria: current trends and applications[J]. J. Prob. Health, 2016, 4: 1000141
|
92 |
Min W H, Fang X B, Wu T, et al. Characterization and antioxidant activity of an acidic exopolysaccharide from Lactobacillus plantarum JLAU103[J]. J. Biosci. Bioeng., 2019, 127: 758
doi: 10.1016/j.jbiosc.2018.12.004
|
93 |
Hu T, Cui Y H, Zhang Y S, et al. Genome analysis and physiological characterization of four Streptococcus thermophilus strains isolated from Chinese traditional fermented milk[J]. Front. Microbiol., 2020, 11: 184
doi: 10.3389/fmicb.2020.00184
|
94 |
Sutherland I W. Microbial polysaccharides from Gram-negative bacteria[J]. Int. Dairy J., 2001, 11: 663
doi: 10.1016/S0958-6946(01)00112-1
|
95 |
Marvasi M, Visscher P T, Martinez L C. Exopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their synthesis[J]. FEMS Microbiol. Lett., 2010, 313: 1
doi: 10.1111/fml.2010.313.issue-1
|
96 |
Flemming H C, Wingender J. The biofilm matrix[J]. Nat. Rev. Microbiol., 2010, 8: 623
doi: 10.1038/nrmicro2415
|
97 |
Nwodo U U, Green E, Okoh A I. Bacterial exopolysaccharides: functionality and prospects[J]. Int. J. Mol. Sci., 2012, 13: 14002
doi: 10.3390/ijms131114002
pmid: 23203046
|
98 |
Sutherland I W. Novel and established applications of microbial polysaccharides[J]. Trends Biotechnol., 1998, 16: 41
doi: 10.1016/S0167-7799(97)01139-6
pmid: 9470230
|
99 |
Rehm B H A. Alginate production: precursor biosynthesis, polymerization and secretion[A]. Rehm B H A. Alginates: Biology and Applications[M]. Berlin, Heidelberg: Springer, 2009: 55
|
100 |
Felt O, Einmahl S, Furrer P, et al. Polymeric Systems for Ophthalmic Drug Delivery[M]. Boca Raton: CRC Press, 2001: 391
|
101 |
Amado I R, Vázquez J A, Pastrana L, et al. Cheese whey: a cost-effective alternative for hyaluronic acid production by Streptococcus zooepidemicus[J]. Food Chem., 2016, 198: 54
doi: 10.1016/j.foodchem.2015.11.062
pmid: 26769504
|
102 |
Stevenson G, Andrianopoulos K, Hobbs M, et al. Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid[J]. J. Bacteriol., 1996, 178: 4885
pmid: 8759852
|
103 |
Singh R, Paul D, Jain R K. Biofilms: implications in bioremediation[J]. Trends Microbiol., 2006, 14: 389
pmid: 16857359
|
104 |
Schmid J, Meyer V, Sieber V. Scleroglucan: biosynthesis, production and application of a versatile hydrocolloid[J]. Appl. Microbiol. Biotechnol., 2011, 91: 937
doi: 10.1007/s00253-011-3438-5
pmid: 21732244
|
105 |
Pochanavanich P, Suntornsuk W. Fungal chitosan production and its characterization[J]. Lett. Appl. Microbiol., 2002, 35: 17
pmid: 12081543
|
106 |
Zhang Y F, Kong H L, Fang Y P, et al. Schizophyllan: a review on its structure, properties, bioactivities and recent developments[J]. Bioact. Carbohydr. Dietary Fibre, 2013, 1: 53
doi: 10.1016/j.bcdf.2013.01.002
|
107 |
Miranda C C B O, Dekker R F H, Serpeloni J M, et al. Anticlastogenic activity exhibited by botryosphaeran, a new exopolysaccharide produced by Botryosphaeria rhodina MAMB-05[J]. Int. J. Biol. Macromol., 2008, 42: 172
doi: 10.1016/j.ijbiomac.2007.10.010
|
108 |
More T T, Yadav J S S, Yan S, et al. Extracellular polymeric substances of bacteria and their potential environmental applications[J]. J. Environ. Manage., 2014, 144: 1
doi: 10.1016/j.jenvman.2014.05.010
pmid: 24907407
|
109 |
Ding Z J, Bourven I, Guibaud G, et al. Role of extracellular polymeric substances (EPS) production in bioaggregation: application to wastewater treatment[J]. Appl. Microbiol. Biotechnol., 2015, 99: 9883
doi: 10.1007/s00253-015-6964-8
pmid: 26381665
|
110 |
Wang J, Yu H Q. Biosynthesis of polyhydroxybutyrate (PHB) and extracellular polymeric substances (EPS) by Ralstonia eutropha ATCC 17699 in batch cultures[J]. Appl. Microbiol. Biotechnol., 2007, 75: 871
pmid: 17318537
|
111 |
Hug I, Feldman M F. Analogies and homologies in lipopolysaccharide and glycoprotein biosynthesis in bacteria[J]. Glycobiology, 2011, 21: 138
doi: 10.1093/glycob/cwq148
pmid: 20871101
|
112 |
Gonçalves A L, Ferreira C, Loureiro J A, et al. Surface physicochemical properties of selected single and mixed cultures of microalgae and cyanobacteria and their relationship with sedimentation kinetics[J]. Bioresour. Bioprocess., 2015, 2: 21
doi: 10.1186/s40643-015-0051-y
|
113 |
Vlassov V V, Laktionov P P, Rykova E Y. Extracellular nucleic acids[J]. BioEssays, 2007, 29: 654
pmid: 17563084
|
114 |
Speziale P, Pietrocola G, Foster T J, et al. Protein-based biofilm matrices in Staphylococci[J]. Front. Cell. Infect. Microbiol., 2014, 4: 171
|
115 |
Peña-Méndez E M, Havel J, Patočka J. Humic substances-compounds of still unknown structure: applications in agriculture, industry, environment, and biomedicine[J]. J. Appl. Biomed., 2005, 3: 13
doi: 10.32725/jab.2005.002
|
116 |
Moura M N, Martín M J, Burguillo F J. A comparative study of the adsorption of humic acid, fulvic acid and phenol onto Bacillus subtilis and activated sludge[J]. J. Hazard. Mater., 2007, 149: 42
doi: 10.1016/j.jhazmat.2007.02.074
|
117 |
Buffle J, Staub C. Measurement of complexation properties of metal ions in natural conditions by ultrafiltration: measurement of equilibrium constants for complexation of zinc by synthetic and natural ligands[J]. Anal. Chem., 1984, 56: 2837
doi: 10.1021/ac00278a047
|
118 |
Soberón-Chávez G, Lépine F, Déziel E. Production of rhamnolipids by Pseudomonas aeruginosa [J]. Appl. Microbiol. Biotechnol., 2005, 68: 718
pmid: 16160828
|
119 |
Salehizadeh H, Shojaosadati S A. Extracellular biopolymeric flocculants: recent trends and biotechnological importance[J]. Biotechnol. Adv., 2001, 19: 371
doi: 10.1016/s0734-9750(01)00071-4
pmid: 14538073
|
120 |
Comte S, Guibaud G, Baudu M. Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: soluble or bound[J]. Process Biochem., 2006, 41: 815
doi: 10.1016/j.procbio.2005.10.014
|
121 |
Lurie M, Rebhun M. Effect of properties of polyelectrolytes on their interaction with particulates and soluble organics[J]. Water Sci. Technol., 1997, 36: 93
|
122 |
Chen W P, Song J H, Jiang S J, et al. Influence of extracellular polymeric substances from activated sludge on the aggregation kinetics of silver and silver sulfide nanoparticles[J]. Front. Environ. Sci. Eng., 2021, 16: 16
doi: 10.1007/s11783-021-1450-2
|
123 |
Solís M, Solís A, Inés Pérez H, et al. Microbial decolouration of azo dyes: a review[J]. Process Biochem., 2012, 47: 1723
doi: 10.1016/j.procbio.2012.08.014
|
124 |
Comte S, Guibaud G, Baudu M. Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties: Part I. Comparison of the efficiency of eight EPS extraction methods[J]. Enzyme Microb. Technol., 2006, 38: 237
doi: 10.1016/j.enzmictec.2005.06.016
|
125 |
Comte S, Guibaud G, Baudu M. Effect of extraction method on EPS from activated sludge: an HPSEC investigation[J]. J. Hazard. Mater., 2007, 140: 129
pmid: 16879910
|
126 |
Pan X L, Wang J L, Zhang D Y, et al. Zn2+ sorption and mechanism by EPS of mixed SRB population[J]. Res. Environ. Sci., 2005, 18(6): 53
|
126 |
潘响亮, 王建龙, 张道勇 等. 硫酸盐还原菌混合菌群胞外聚合物对Zn2+的吸附和机理[J]. 环境科学研究, 2005, 18(6): 53
|
127 |
Li W W, Yu H Q. Insight into the roles of microbial extracellular polymer substances in metal biosorption[J]. Bioresour. Technol., 2014, 160: 15
doi: 10.1016/j.biortech.2013.11.074
|
128 |
Yan S J, Cai Y G, Li H Q, et al. Enhancement of cadmium adsorption by EPS-montmorillonite composites[J]. Environ. Pollut., 2019, 252: 1509
doi: S0269-7491(19)31480-0
pmid: 31272010
|
129 |
Neyens E, Baeyens J, Dewil R, et al. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering[J]. J. Hazard. Mater., 2004, 106: 83
doi: 10.1016/j.jhazmat.2003.11.014
pmid: 15177096
|
130 |
Xiao Y, Zhao F. Electrochemical roles of extracellular polymeric substances in biofilms[J]. Curr. Opin. Electrochem., 2017, 4: 206
|
131 |
Zheng Y, Quan X C, Zhuo M H, et al. In-situ formation and self-immobilization of biogenic Fe oxides in anaerobic granular sludge for enhanced performance of acidogenesis and methanogenesis[J]. Sci. Total Environ., 2021, 787: 147400
doi: 10.1016/j.scitotenv.2021.147400
|
132 |
Zhuravel R, Huang H C, Polycarpou G, et al. Backbone charge transport in double-stranded DNA[J]. Nat. Nanotechnol., 2020, 15: 836
doi: 10.1038/s41565-020-0741-2
|
133 |
Saunders S H, Tse E C M, Yates M D, et al. Extracellular DNA promotes efficient extracellular electron transfer by pyocyanin in Pseudomonas aeruginosa biofilms[J]. Cell, 2020, 182: 919
doi: S0092-8674(20)30871-0
pmid: 32763156
|
134 |
Wang X B, Chen T T, Gao C Y, et al. Use of extracellular polymeric substances as natural redox mediators to enhance denitrification performance by accelerating electron transfer and carbon source metabolism[J]. Bioresour. Technol., 2022, 345: 126522
doi: 10.1016/j.biortech.2021.126522
|
135 |
Park J K, Lee J W, Jung J Y. Cadmium uptake capacity of two strains of Saccharomyces cerevisiae cells[J]. Enzyme Microb. Technol., 2003, 33: 371
doi: 10.1016/S0141-0229(03)00133-9
|
136 |
Chen S Q, Zhang D. Study of corrosion behavior of copper in 3.5 wt.% NaCl solution containing extracellular polymeric substances of an aerotolerant sulphate-reducing bacteria[J]. Corros. Sci., 2018, 136: 275
doi: 10.1016/j.corsci.2018.03.017
|
137 |
Zhu J F, Chen S C, Sun L Q, et al. LincRNA-EPS impairs host antiviral immunity by antagonizing viral RNA-PKR interaction[J]. EMBO Rep., 2022, 23: e53937
doi: 10.15252/embr.202153937
|
138 |
Beech I B, Zinkevich V, Tapper R, et al. Direct involvement of an extracellular complex produced by a marine sulfate- reducing bacterium in deterioration of steel[J]. Geomicrobiol. J., 1998, 15: 121
doi: 10.1080/01490459809378069
|
139 |
Zhang Y X, Liu H X, Jin Z Y, et al. Fungi corrosion of high-strength aluminum alloys with different microstructures caused by marine Aspergillus terreus under seawater drop[J]. Corros. Sci., 2023, 212: 110960
doi: 10.1016/j.corsci.2023.110960
|
140 |
Cheng S, Lau K T, Chen S G, et al. Microscopical observation of the marine bacterium Vibrio natriegeus growth on metallic corrosion[J]. Mater. Manuf. Processes, 2010, 25: 293
doi: 10.1080/10426911003747642
|
141 |
Ding Q M, Liu R Y, Cui Y Y, et al. Influence of electron mediator on microbiologically influenced corrosion behavior of 2024 aluminum alloy[J]. Corrosion, 2023, 79: 146
doi: 10.5006/4111
|
142 |
Khan M S, Yang C G, Zhao Y, et al. An induced corrosion inhibition of X80 steel by using marine bacterium Marinobacter salsuginis [J]. Colloids Surf., 2020, 189B: 110858
|
143 |
Finkenstadt V L, Côté G L, Willett J L. Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides [J]. Biotechnol. Lett., 2011, 33: 1093
doi: 10.1007/s10529-011-0539-2
pmid: 21290167
|
144 |
Pedersen A, Hermansson M. Bacterial corrosion of iron in seawater in situ, and in aerobic and anaerobic model systems[J]. FEMS Microbiol. Lett., 1991, 86: 139
doi: 10.1111/fml.1991.86.issue-2
|
145 |
Dubiel M, Hsu C H, Chien C C, et al. Microbial iron respiration can protect steel from corrosion[J]. Appl. Environ. Microbiol., 2002, 68: 1440
doi: 10.1128/AEM.68.3.1440-1445.2002
|
146 |
Bautista B E T, Wikieł A J, Datsenko I, et al. Influence of extracellular polymeric substances (EPS) from Pseudomonas NCIMB 2021 on the corrosion behaviour of 70Cu-30Ni alloy in seawater[J]. J. Electroanal. Chem., 2015, 737: 184
doi: 10.1016/j.jelechem.2014.09.024
|
147 |
Li S, Qu Q, Li L, et al. Bacillus cereus s-EPS as a dual bio-functional corrosion and scale inhibitor in artificial seawater[J]. Water Res., 2019, 166
|
148 |
Pan X L, Wang J L, Zhang D Y. Copper(Ⅱ) sorption by EPS of mixed SRB population and mechanism[J]. Technol. Water Treat., 2005, 31(9): 25
|
148 |
潘响亮, 王建龙, 张道勇. 硫酸盐还原菌混合菌群胞外聚合物对Cu2+的吸附和机理[J]. 水处理研究, 2005, 31(9): 25
|
149 |
Mishra S P. Removal of heavy metal ions from copper and zinc industrial effluents using Penicillium sp[J]. Int. J. Environ. Sci. Technol., 2022, 19(9): 9107
doi: 10.1007/s13762-021-03607-5
|
150 |
Dong Y H, Guo N, Liu T, et al. Effect of extracellular polymeric substances isolated from Vibrio natriegens on corrosion of carbon steel in seawater[J]. Corros. Eng. Sci. Technol., 2016, 51: 455
doi: 10.1080/1478422X.2016.1139319
|
151 |
Szatmári D, Sárkány P, Kocsis B, et al. Intracellular ion concentrations and cation-dependent remodelling of bacterial MreB assemblies[J]. Sci. Rep., 2020, 10(1): 12002
doi: 10.1038/s41598-020-68960-w
pmid: 32686735
|
152 |
Anjana K, Kaushik A, Kiran B, et al. Biosorption of Cr(VI) by immobilized biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil[J]. J. Hazard. Mater., 2007, 148: 383
pmid: 17403568
|
153 |
Sulaymon A H, Mohammed A A, Al-Musawi T J. Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae[J]. Environ. Sci. Pollut. Res., 2013, 20: 3011
doi: 10.1007/s11356-012-1208-2
|
154 |
Matheickal J T, Yu Q, Feltham J. Cu(II) binding by E. radiata biomaterial[J]. Environ. Technol., 1997, 18: 25
doi: 10.1080/09593331808616509
|
155 |
Cao B C, Zhao Z P, Peng L L, et al. Silver nanoparticles boost charge-extraction efficiency in Shewanella microbial fuel cells[J]. Science, 2021, 373: 1336
doi: 10.1126/science.abf3427
|
156 |
Boggs M A, Jiao Y Q, Dai Z R, et al. Interactions of plutonium with Pseudomonas sp. strain EPS-1W and its extracellular polymeric substances[J]. Appl. Environ. Microbiol., 2016, 82: 7093
doi: 10.1128/AEM.02572-16
|
157 |
Lai C Y, Dong Q Y, Chen J X, et al. Role of extracellular polymeric substances in a methane based membrane biofilm reactor reducing vanadate[J]. Environ. Sci. Technol., 2018, 52: 10680
doi: 10.1021/acs.est.8b02374
|
158 |
Naveed S, Li C H, Lu X D, et al. Microalgal extracellular polymeric substances and their interactions with metal(loid)s: a review[J]. Crit. Rev. Environ. Sci. Technol., 2019, 49: 1769
doi: 10.1080/10643389.2019.1583052
|
159 |
Ozturk S, Aslim B, Suludere Z. Cadmium(II) sequestration characteristics by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition[J]. Bioresour. Technol., 2010, 101: 9742
doi: 10.1016/j.biortech.2010.07.105
|
160 |
Zhang Z L, Cai R H, Zhang W H, et al. A novel exopolysaccharide with metal adsorption capacity produced by a marine bacterium Alteromonas sp. JL2810[J]. Mar. Drugs, 2017, 15: 175
doi: 10.3390/md15060175
|
161 |
Xie Q. The complexation of extracellular polymeric substances with Cadmium in alleviating the toxicity on Chlorella vulgaris [D]. Xiangtan: Xiangtan University, 2019
|
161 |
谢琪婷. 小球藻胞外聚合物与镉的络合作用对镉毒性效应的缓解[D]. 湘潭: 湘潭大学, 2019
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|