Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 267-277     CSTR: 32134.14.1005.4537.2023.090      DOI: 10.11902/1005.4537.2023.090
  综合评述 本期目录 | 过刊浏览 |
压水堆二回路碱化剂与材料的相容性研究进展
冀跃飞1,2, 郝龙1,2(), 王俭秋1,2,3, 李庆华4, 郑跃4, 于沛4, 柯伟1,3
1.中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
3.广东腐蚀科学与技术创新研究院 广州 510700
4.中国核电工程有限公司 北京 100083
Research Progress on Compatibility Between Alkalizing Agents and Materials in PWR Secondary Circuit
JI Yuefei1,2, HAO Long1,2(), WANG Jianqiu1,2,3, LI Qinghua4, ZHENG Yue4, YU Pei4, KE Wei1,3
1.Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Institute of Corrosion Science and Technology, Guangzhou 510700, China
4.China Nuclear Power Engineering Co., Ltd., Beijing 100083, China
引用本文:

冀跃飞, 郝龙, 王俭秋, 李庆华, 郑跃, 于沛, 柯伟. 压水堆二回路碱化剂与材料的相容性研究进展[J]. 中国腐蚀与防护学报, 2024, 44(2): 267-277.
Yuefei JI, Long HAO, Jianqiu WANG, Qinghua LI, Yue ZHENG, Pei YU, Wei KE. Research Progress on Compatibility Between Alkalizing Agents and Materials in PWR Secondary Circuit[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 267-277.

全文: PDF(3835 KB)   HTML
摘要: 

综述了国内外压水堆二回路碱化剂的应用情况及其与二回路结构材料相容性的研究进展。首先介绍了碱化剂的国内外发展历程;其次,从材料类型、水化学、碱化剂物理化学性质等3个角度讨论了碱化剂与材料的相容性;最后,论述了碱化剂调节pH的原理,并详细介绍了有机胺分子与材料表面氧化膜间的作用机制。

关键词 二回路碱化剂水化学乙醇胺结构材料    
Abstract

Impurities such as pipeline corrosion products and dissolved oxygen etc. in the secondary circuit of pressurized water reactor (PWR) can enter the steam generator through the water supply system and deposit at different positions, resulting in the decrease of heat transfer capacity and the instability of thermal and hydraulic system. The water chemistry control in secondary circuit of PWR is of great significance for a safe operation of system equipment and core components. The purpose of this work is to summarize the application of pH control agents at home and abroad, and the research progress in the compatibility between employed alkalizing agents and structural materials. Firstly, the development process in alkalizing agent for PWR secondary circuit and its application at home and abroad are detailed. Secondly, the factors influencing the compatibility between the employed alkalizing agents and structural materials are discussed from three aspects: structural materials, hydrochemistry and the physicochemical properties of alkalizing agents. Finally, the working mechanism of alkalizing agent in adjusting pH is discussed, especially the mechanism of interactions between amine molecules and the oxide scales formed on the surface of structural materials.

Key wordssecondary circuit    alkalizing agent    water chemistry    ethanolamine    structural material
收稿日期: 2023-03-27      32134.14.1005.4537.2023.090
ZTFLH:  TG174  
基金资助:中核集团领创科研项目
通讯作者: 郝龙,E-mail:lhao@imr.ac.cn, chinahaolong@126.com,研究方向为高温水化学控制用添加剂与安全评估
Corresponding author: HAO Long, E-mail: lhao@imr.ac.cn, chinahaolong@126.com
作者简介: 冀跃飞,男,1997年生,博士生
图1  压水堆核电站二回路水化学演变示意图
图2  秦山核电厂在不同水化学控制下二回路各系统的pH[27]
MaterialCSiPSCrMnNiCuNbTiFeOther
20#0.17-0.230.17-0.37≤0.035≤0.035≤0.250.35-0.65≤0.3≤0.25----
P280GH0.08-0.20≤0.4≤0.025≤0.015≤0.30.9-1.5≤0.5≤0.30≤0.01≤0.03-Mo≤0.08
304≤0.03≤1.0≤0.045≤0.0318-20≤2.08-12---bal-
316≤0.03≤1.0≤0.045≤0.0316-18≤2.010-14----Mo: 2-3
17-4PH≤0.07≤1.0≤0.040≤0.0315.0-17.5≤2.03-53-50.15-0.45---
690≤0.04≤0.5-≤0.01528-31≤0.5>58≤0.5--7-11Co≤0.01
800≤0.1≤1.0-≤0.01519-23≤1.530-35≤0.75-0.15-0.60>39.5-
表1  压水堆核电站二回路中采用的典型金属结构材料及其成分组成
图3  蒸汽发生器管板支撑(TSP)缝隙内杂质示意图[3]
图4  300℃时Fe、Ni、Cr氧化物溶解度与pH的关系示意图[3]
图5  260℃时Fe-H2O、Cr-H2O、Ni-H2O体系的电位与pH关系示意图
图6  690TT合金管上磁铁矿沉积行为[72]
1 https://pris.iaea.org/PRIS/WorldStatistics/OperationalByAge.aspx
2 Zhang T K, Li M R, Yin W P. Report on the Development of China's Nuclear Energy (2022)[M]. Beijing: Social Sciences Academic Press, 2022: 1
2 张廷克, 李闽榕, 尹卫平. 中国核能发展报告(2022)[M]. 北京: 社会科学文献出版社, 2022: 1
3 Staehle R W, Gorman J A. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: part 1[J]. Corrosion, 2003, 59: 931
doi: 10.5006/1.3277522
4 Staehle R W. Bases for predicting the earliest penetrations due to SCC for Alloy 600 on the secondary side of PWR steam generators[R]. Washington: U.S. Nuclear Regulatory Commission, 2001
5 EPRI. Pressurized water reactor secondary water chemistry guidelines-revision 7[R]. Palo Alto: EPRI, 2009
6 Zhu Z P. Water Chemistry Condition and Optimization of PWR Nuclear Power Plant[M]. Beijing: Atomic Energy Press, 2010
6 朱志平. 压水堆核电厂水化学工况及优化[M]. 北京: 原子能出版社, 2010
7 Liu Z F, Wang Y L, Ji B X. The research and preparation of a slow-dissolved phosphate water treatment agent and its uses in boiler water treatment[J]. Ind. Water Treat., 1998, 18(5): 13
7 刘振法, 王育琳, 籍宝霞. 缓溶磷酸盐水处理剂的研制及在锅炉水处理中的应用[J]. 工业水处理, 1998, 18(5): 13
8 Lin G X, Guan S M. Status quo and development of the phosphate water chemistry conditions in heat power plants[J]. Ind. Water Treat., 2001, 21(8): 11
8 林根仙, 管淑敏. 火电厂磷酸盐水化学工况的现状与发展[J]. 工业水处理, 2001, 21(8): 11
doi: 10.11894/1005-829x.2001.21(8).11
9 Tatone O S, Pathania R S. Damage of heat transfer tubes of steam generators of water cooled reactors in 1980[J]. Nucl. Power Eng., 1984, 5(4): 88
9 Tatone O S, Pathania R S. 1980年水冷堆蒸汽发生器传热管破损情况[J]. 核动力工程, 1984, 5(4): 88
10 Zhou S K. Corrosion and protection of PWR steam generators[J]. Atomic Energy Sci. Technol., 1987, 21: 639
10 周寿康. 压水堆蒸汽发生器的腐蚀与防护[J]. 原子能科学技术, 1987, 21: 639
11 Li D R. PWR plant water chemistry and comparison with fossil power p1ants[J]. Power Eng., 1987, 7(1): 47|
11 励德荣. 压水反应堆核电站水化学工况以及与常规电站的比较[J]. 动力工程, 1987, 7(1): 47
12 Zhu Z P, Xiong S H, Jing L L, et al. Analysis on the characteristics of secondary water chemistry in PWR nuclear power plant[A]. Proceedings of Power Plant Chemistry 2009 Academic Annual Meeting and China Power Plant Chemistry Network Summit Forum[C]. Wuhan, 2009: 72
12 朱志平, 熊书华, 荆玲玲 等. 压水堆核电站二回路水化学工况特性分析[A]. 电厂化学2009学术年会暨中国电厂化学网高峰论坛论文集[C]. 武汉, 2009: 72
13 Hu R. Study on pH control scheme of secondary circuit of Sanmen nuclear power phase I project[J]. China High-Tech Enterp., 2015, (13): 15
13 胡 蓉. 三门核电一期工程二回路pH控制方案研究[J]. 中国高新技术企业, 2015, (13): 15
14 Xie Y. Research on chemical water treatment technology for nuclear power plants[A]. Proceedings of the 2007 Annual Academic Conference of the Chinese Nuclear Society[C]. Wuhan, 2007: 66
14 谢 严. 核电站化学水处理技术研究[A]. 中国核学会2007年学术年会论文摘要集[C]. 武汉, 2007: 66
15 Gipon E, Trevin S. Flow-accelerated corrosion in nuclear power plants[A]. Ritter S. Nuclear Corrosion: Research, Progress and Challenges[M]. Duxford : Woodhead Publishing, 2020: 213
16 Yu M. Study on mechanism of flow accelerated corrosion in nuclear power plants[J]. Ind. Sci. Trib., 2015, 14(10): 43
16 于 淼. 核电站流动加速腐蚀的机理研究[J]. 产业与科技论坛, 2015, 14(10): 43
17 Wang L L, Rao D L, Kuang B, et al. Pipeline wall thinning behavior of A335P11 steel under the condition of flow accelerated corrosion[J]. Corros. Prot., 2018, 39: 511
17 王亮亮, 饶德林, 匡 波 等. A335P11钢在流动加速腐蚀条件下的管壁减薄行为[J]. 腐蚀与防护, 2018, 39: 511
18 Pan D L, Si X D, Lyu J H. Effect of flow velocity on flow accelerated corrosion rate of carbon steel elbow[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1064
18 潘代龙, 司晓东, 吕金洪. 流速对碳钢弯管段流动加速腐蚀速率的影响[J]. 中国腐蚀与防护学报, 2023, 43: 1064
doi: 10.11902/1005.4537.2022.319
19 Turner C W. Implications of steam generator fouling on the degradation of material and thermal performance[A]. BusbyJ T, IlevbareG, AndresenP L. 15th International Conference on Environmental degradation of Materials in Nuclear Power Systems-Water Reactors[M]. Hoboken: Wiley, 2011: 2287
20 Jeon S H, Song G D, Hur D H. Micro-galvanic corrosion of steam generator materials within pores of magnetite flakes in alkaline solutions[J]. Metals, 2018, 8(11): 899
doi: 10.3390/met8110899
21 Fujiwara K, Kawamura H, Kanbe H, et al. Applicability of chemical cleaning process to steam generator secondary side, (I)[J]. J. Nucl. Sci. Technol., 2004, 41: 44
doi: 10.1080/18811248.2004.9715456
22 Zhao S X, Cao W R, Niu T T, et al. Investigation on application of organic amine in secondary circuit of PWR nuclear power plant[J]. Pop. Stand., 2022, (14): 132
22 赵守霞, 曹卫荣, 牛婷婷 等. 有机胺在压水堆核电厂二回路应用的调研[J]. 大众标准化, 2022, (14): 132
23 Prince A A M, Velmurugan S, Narasimhan S V, et al. Dissolution behaviour of magnetite film formed over carbon steel in dilute organic acid media[J]. J. Nucl. Mater., 2001, 289: 281
doi: 10.1016/S0022-3115(01)00425-1
24 Zuo M, Fan X M, He H H, et al. Research on water chemistry effect of nuclear power secondary loop morpholine and ethanol amine dosing conditions[J]. Guangdong Chem. Ind., 2012, 39(14): 50
24 左 萌, 范晓梅, 何汉华 等. 核电二回路吗啉与乙醇胺加药工况的水化学影响研究[J]. 广东化工, 2012, 39(14): 50
25 Cao S Y, Sun B D, Huang W Q, et al. Experiment on thermal decomposition characteristics of ETA and its application to secondary system of NPP[J]. Corros. Prot., 2012, 33: 1019
25 曹松彦, 孙本达, 黄万启 等. 乙醇胺的热稳定性试验及其在核电站二回路系统的应用[J]. 腐蚀与防护, 2012, 33: 1019
26 Miller A D. PWR Advanced amine application guidelines-revision 2[R]. Palo Alto: EPRI, 1997: 19
27 Tian M S. Analysis and optimization on secondary system water chemistry control mode of Qinshan nuclear power plant[J]. Corros. Prot., 2021, 42(6): 68
27 田民顺. 秦山核电站二回路系统水化学控制模式的分析和优化[J]. 腐蚀与防护, 2021, 42(6): 68
28 Zhao Y F, Wang J F, Ma W G, et al. Research on application characteristics of ethanolamine used in secondary system of nuclear power plants[J]. Nucl. Power Eng., 2014, 35(6): 167
28 赵永福, 王今芳, 马韦刚 等. 核电厂二回路乙醇胺的应用性能研究[J]. 核动力工程, 2014, 35(6): 167
29 Shen J. Research of ETA water chemistry treatment technology in secondary circuit of PWR plant[J]. Nucl. Power Eng., 2014, 35(6): 122
29 沈 君. 压水堆核电厂二回路ETA水化学处理研究[J]. 核动力工程, 2014, 35(6): 122
30 Wang H, Xie X J, He J, et al. On the application of ethanolamine in the secondary circuit of nuclear power plants[A]. Proceedings of the 2010 Academic Exchange Meeting of Hubei Province and Wuhan Society for Corrosion and Protection[C]. Wuhan, 2010: 43
30 王 浩, 谢学军, 何 洁 等. 关于乙醇胺在核电站二回路的应用[A]. 湖北省暨武汉腐蚀与防护学会2010年学术交流会论文集[C]. 武汉, 2010: 43
31 Cao S Y, Wang J F, Sun B D, et al. Adoptation of ethanolamine to inhibit flow-accelerated corrosion in secondary systems of nuclear power stations[J]. Therm. Power Gener., 2011, 40(1): 73
31 曹松彦, 王今芳, 孙本达 等. 采用乙醇胺抑制核电站二回路系统的流动加速腐蚀[J]. 热力发电, 2011, 40(1): 73
32 Mauricio C, Ivanna R, Narciso F, et al. Modifications in the secondary circuit chemistry control of embalse NPP[J]. Power Plant Chem., 2008, 10: 676
33 Zhao Y F, Jiang E, Gong B, et al. China nuclear power research and design institute. A new compound alkalizing agent and its application[P]. Chin Pat, 105417668A, 2016
33 赵永福, 姜 峨, 龚 宾 等. 一种复合碱化剂及其用途[P]. 中国专利, 105417668A, 2016
34 Zhao Y F, Jiang E, Gong B, et al. Feasibility study on combined application of ethanolamine and ammonia in the secondary circuit of nuclear power plant[J]. Electr. Power, 2019, 52(4): 127
34 赵永福, 姜 峨, 龚宾 等. 核电站二回路乙醇胺与氨复合应用可行性研究[J]. 中国电力, 2019, 52(4): 127
35 Song Y W, Zhu Z P, Zhou P, et al. Corrosion inhibition characteristics of 304L stainless steel under ETA+MPA water condition under simulated secondary circuit environment[J]. Atomic Energy Sci. Technol., 2021, 55: 2323
35 宋有为, 朱志平, 周 攀 等. 模拟二回路环境下乙醇胺与3-甲氧基丙胺复合水工况对304L不锈钢的缓蚀特性[J]. 原子能科学技术, 2021, 55: 2323
doi: 10.7538/yzk.2020.youxian.0874
36 Qin J H. The study of secondary water chemistry problem for Qinshan Ⅱ NPP[D]. Shanghai: Shanghai Jiao Tong University, 2008
36 秦建华. 秦山第二核电厂二回路水质问题及对策研究[D]. 上海: 上海交通大学, 2008
37 Joshi A C, Rufus A L, Suresh S, et al. Characterization of the oxide formed in the presence of poly acrylic acid over the steam generator structural materials of nuclear power plants[J]. J. Nucl. Mater., 2013, 437: 139
doi: 10.1016/j.jnucmat.2013.01.353
38 Betova I, Bojinov M, Saario T. Influence of dispersants on the corrosion and deposition processes in power plant coolant circuits[R]. Espoo: VTT Technical Research Centre of Finland, 2013
39 Cao L Y, Wang H, Xin C S. Influence of dispersant on corrosion behavior of structure materials in pressurized water reactor secondary side water conditions[J]. Corros. Prot., 2016, 37: 554
39 曹林园, 王 辉, 辛长胜. 模拟压水堆(PWR)二回路条件下添加分散剂对结构材料腐蚀行为的影响[J]. 腐蚀与防护, 2016, 37: 554
40 Song X Z, Zhu Z P, Zhou P, et al. Effect of polyacrylic acid on dispersion characteristics of corrosion product Fe3O4 in water of power plant and its mechanism[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 479
40 宋显志, 朱志平, 周 攀 等. 聚丙烯酸对Fe3O4的分散特性及其机理研究[J]. 中国腐蚀与防护学报, 2022, 42: 479
doi: 10.11902/1005.4537.2021.110
41 Kreider M, Miller A, Wilson L, et al. Dispersant for tube fouling control-volume 4: long-term trial at McGuire Unit 2: implementation and results (2005—2006)[R]. Palo Alto: EPRI, 2007
42 Betova I, Bojinov M, Saario T. Film-Forming Amines in Steam/Water Cycles: structure, properties, and influence on corrosion and deposition processes[R]. Espoo: VTT Technical Research Centre of Finland, 2014
43 Liu C S, Lin G X, Sun Y, et al. The maintenance technology of film-forming amine on the inner wall of the condenser drain pipe in the secondary circuit of the pressurized water reactor[J]. Nucl. Sci. Eng., 2021, 41: 727
43 刘灿帅, 林根仙, 孙 云 等. 压水堆二回路凝汽器母管内壁的成膜胺保养工艺研究[J]. 核科学与工程, 2021, 41: 727
44 Kukushkin A N, Czempik E, Kolomtsev Y V, et al. Secondary side water chemistry experience with octadecylamine and hydrazine treatment at WWER plants[R]. Berlin, Germany, 2008
45 Ramminger U, Fandrich J, Roumiguiére F M. Method for conditioning a power-generating circulatory system of a power plant[P]. US Pat, 20140102481A1, 2014
46 Song L J, Li X M, Zhang L F, et al. Effect of ethanolamine on corrosion performance of carbon steels[J]. Corros. Prot., 2015, 36: 828
46 宋利君, 李新民, 张乐福 等. 乙醇胺对碳钢腐蚀性能的影响[J]. 腐蚀与防护, 2015, 36: 828
47 Kuang W J, Mathews J A, Macdonald D D. The effect of Anodamine on the corrosion behavior of 1018 mild steel in deionized water: I. Immersion and polarization tests[J]. Electrochim. Acta, 2014, 127: 79
doi: 10.1016/j.electacta.2014.02.011
48 Wang L, Luo K J, Fang K W, et al. Uniform corrosion and flow accelerated corrosion rates of TU48C steel in different alkalizer solutions[J]. Mater. Mech. Eng., 2017, 41(8): 80
doi: 10.11973/jxgccl201708018
48 王 力, 罗坤杰, 方可伟 等. 在不同碱化剂溶液中TU48C钢的均匀腐蚀及流动加速腐蚀速率[J]. 机械工程材料, 2017, 41(8): 80
49 Raiman S S, Kurley J M, Sulejmanovic D, et al. Corrosion of 316H stainless steel in flowing FLiNaK salt[J]. J. Nucl. Mater., 2022, 561: 153551
doi: 10.1016/j.jnucmat.2022.153551
50 Li Z D, Cui Z D, Hou X Y, et al. Corrosion property of nuclear grade 316LN stainless steel weld joint in high temperature and high pressure water[J]. J. Chin. Soc. Corros. Prot., 2019, 39: 106
50 李兆登, 崔振东, 侯相钰 等. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39: 106
doi: 10.11902/1005.4537.2018.023
51 Lin Z X, Dang Y, Xu Q, et al. Research on general corrosion of alloy 690 in primary and secondary loops of nuclear plants[J]. Mater. Rep., 2020, 34(): 437
51 林震霞, 党 莹, 徐 祺 等. 690合金在核电厂一、二回路工况下的均匀腐蚀性能研究[J]. 材料导报, 2020, 34(suppl.2) : 437
52 Zhu Z L, Ma C H, Li Y Y, et al. Oxidation behavior of nickel-based alloy Inconel617B in supercritical water at 700℃[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 655
52 朱忠亮, 马辰昊, 李宇旸 等. 镍基合金Inconel617B在700℃超临界水环境中的氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42: 655
doi: 10.11902/1005.4537.2021.145
53 Manjanna J, Rangarajan S, Velmurugan S V, et al. Surface analysis of Monel, Incoloy, and stainless steel exposed to ETA and LiOH at 150oC[J]. Corros. Prev. Control, 2002, 49: 18
54 Bosch R W, Féron D, Celis J P. Electrochemistry in Light Water Reactors: Reference Electrodes, Measurement, Corrosion and Tribocorrosion Issues[M]. Cambridge: Woodhead Publishing, 2007: 1
55 Wang J Z, Wang J Q, Han E H. Corrosion behavior of alloy 800 in NaOH and ETA solutions at 300 ℃[J]. Acta Metall. Sin., 2016, 52: 599
doi: 10.11900/0412.1961.2015.00490
55 王家贞, 王俭秋, 韩恩厚. 800合金在300℃NaOH和ETA溶液中的腐蚀行为[J]. 金属学报, 2016, 52: 599
doi: 10.11900/0412.1961.2015.00490
56 Yun G C, Cheng X Z. Pressurized Water Reactor Water Chemistry[M]. Harbin: Harbin Engineering University Press, 2009
56 云桂春, 成徐州. 压水反应堆水化学[M]. 哈尔滨: 哈尔滨工程大学出版社, 2009
57 Yin Y Y, Liu J F, Miao K J, et al. Effect of SO42- on corrosion of stainless steel in solutions containing Cl- [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 34
57 尹阳阳, 刘建峰, 缪克基 等. SO42-对不锈钢在含Cl-溶液中腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2022, 42: 34
doi: 10.11902/1005.4537.2020.234
58 Ning F Q, Tan J B, Wu X Q. Effects of 405 stainless steel on crevice corrosion behavior of Alloy 690 in high-temperature pure water[J]. J. Mater. Sci. Technol., 2020, 47: 76
doi: 10.1016/j.jmst.2020.02.004
59 Liu X C. Fretting corrosion behavior of Alloy 690TT heat transferring tube for steam generator under high temperature high pressure water[D]. Hefei: University of Science and Technology of China, 2019
59 柳星辰. 蒸汽发生器用690TT合金传热管高温高压水中的微动腐蚀行为研究[D]. 合肥: 中国科学技术大学, 2019
60 Zhu Z P, Zhao Y F, Zhou Y, et al. Electrochemical performance of alloy 690 under ETA and AVT water chemistry condition[J]. Corros. Sci. Prot. Technol., 2012, 24: 285
60 朱志平, 赵永福, 周 瑜 等. 690合金在ETA和AVT水工况下的电化学特性[J]. 腐蚀科学与防护技术, 2012, 24: 285
61 Jia W Y, Ren L, Xu J, et al. Study on the relationship between Fe3O4 fouling and NiFe2O4 oxide layer in the secondary circuit of nuclear steam generator[J]. Surf. Sci., 2022, 717: 122001
doi: 10.1016/j.susc.2021.122001
62 Zhang P Z, Chen T, Yan F H, et al. Study on general corrosion behaviors of Inconel690 in simulation environment with ETA/NH3 [J]. Atomic Energy Sci. Technol., 2015, 49: 518
62 张平柱, 陈 童, 严峰鹤 等. Inconel690在ETA/NH3水化学环境中的均匀腐蚀行为研究[J]. 原子能科学技术, 2015, 49: 518
doi: 10.7538/yzk.2015.49.03.0518
63 Eeden N V, Matthee F, Montshiwagae M. Experience and optimisation of ethanolamine treatment for a PWR secondary system[A]. International Conference on Water Chemistry of Nuclear Reactor Systems[C]. Paris, 2012
64 Galt K J, Caris N B. Ethanolamine experience at Koeberg nuclear power station, South Africa[A]. International Conference on Water Chemistry in Nuclear Reactors Systems[C]. Avignon, 2002
65 Cao L Y, Wang H, Yang M X, et al. Influence of alkalizer on corrosion behavior of structure material in pressurized water reactor secondary circuit[J]. Atomic Energy Sci. Technol., 2020, 54: 842
65 曹林园, 王 辉, 杨明馨 等. 压水堆二回路工况下碱化剂对结构材料腐蚀的影响[J]. 原子能科学技术, 2020, 54: 842
doi: 10.7538/yzk.2019.youxian.0367
66 Cai J P, Tian M S, He Y H, et al. Compatibility of ethanol amine (ETA) and materials in secondary circuit system of nuclear power plant[J]. Corros. Prot., 2019, 40: 485
66 蔡金平, 田民顺, 何艳红 等. 乙醇胺与核电厂二回路材料的相容性[J]. 腐蚀与防护, 2019, 40: 485
67 Rhee I H, Jung H, Cho D. Evaluation of pH control agents influencing on corrosion of carbon steel in secondary water chemistry condition of pressurized water reactor[J]. Nucl. Eng. Technol., 2014, 46: 431
doi: 10.5516/NET.09.2013.076
68 Zhu Z P, Yang L, Qiao Y, et al. Experimental study on gas-liquid partition coefficient and thermal decomposition characteristics of ethanolamine in high-temperature aqueous systems[J]. Electr. Power, 2018, 51(5): 128
68 朱志平, 杨 磊, 乔 越 等. 乙醇胺汽液分配系数及高温分解特性的试验研究[J]. 中国电力, 2018, 51(5): 128
69 Chexal B, Horowitz J, Dooley B. Flow-accelerated corrosion in power plants. Revision 1[R]. Palo Alto: EPRI, 1998
70 Kawamura H, Shoda Y, Terachi T, et al. PWR secondary water chemistry guidelines in Japan-Purpose and technical background[J]. Prog. Nucl. Energy, 2019, 114: 121
doi: 10.1016/j.pnucene.2019.01.027
71 Ren L, Wang S C, Xu J, et al. Fouling on the secondary side of nuclear steam generator tube: experimental and simulated study[J]. Appl. Surf. Sci., 2022, 590: 153143
doi: 10.1016/j.apsusc.2022.153143
72 Lee Y B, Lee J M, Hur D H, et al. Effects of advanced amines on magnetite deposition of steam generator tubes in secondary system[J]. Coatings, 2021, 11: 514
doi: 10.3390/coatings11050514
[1] 刘保平, 张志明, 王俭秋, 韩恩厚, 柯伟. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[2] 张兹瑜, 吴欣强, 韩恩厚, 柯伟. 核电结构材料腐蚀疲劳裂纹扩展行为研究现状与进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 9-15.
[3] 马麒, 蔡景顺, 穆松, 周霄骋, 刘凯, 刘建忠, 刘加平. 有机氨基醇阻锈剂在混凝土模拟孔隙液和砂浆试块中对钢筋的阻锈作用[J]. 中国腐蚀与防护学报, 2021, 41(5): 659-666.
[4] 陈菊娜,吴佳佳,王鹏,张盾. 脱硫弧菌和溶藻弧菌对船体结构材料907钢海水腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 402-410.
[5] 汪家梅,陆辉,段振刚,张乐福,孟凡江,徐雪莲. 模拟压水堆二回路水环境中温度对690合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 113-120.
[6] 邓平,孙晨,彭群家,韩恩厚,柯伟. 堆芯结构材料辐照促进应力腐蚀开裂研究现状[J]. 中国腐蚀与防护学报, 2015, 35(6): 479-487.
[7] 海正银, 王辉, 曹林园, 胡勇. 模拟压水堆一回路条件添加Pt技术研究[J]. 中国腐蚀与防护学报, 2014, 34(3): 253-256.
[8] 马成, 彭群家, 韩恩厚, 柯伟. 核电结构材料应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2014, 34(1): 37-45.
[9] 孙荣鹏 王俭秋 韩恩厚. 乙醇胺ETA浓度对核电站二回路碳钢和镍基合金690腐蚀的影响[J]. 中国腐蚀与防护学报, 2013, 33(2): 97-103.
[10] 黄军波 吴欣强 韩恩厚 柯 伟. 材料在高温高压水溶液中的电化学行为研究现状与进展[J]. 中国腐蚀与防护学报, 2008, 28(6期): 374-380.
[11] 周欣; 杨怀玉; 蔡铎昌; 沈长斌; 陶晓杰; 韩冬云 . 低碳钢在富含H2S乙醇胺溶液中的腐蚀及缓蚀剂抑制[J]. 中国腐蚀与防护学报, 2005, 25(2): 79-83 .
[12] 陈旭俊;徐越;马仁川;杨晓波. 乙醇胺钼酸盐的缓蚀作用与机理[J]. 中国腐蚀与防护学报, 1995, 15(4): 279-284.