Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 295-302     CSTR: 32134.14.1005.4537.2023.095      DOI: 10.11902/1005.4537.2023.095
  综合评述 本期目录 | 过刊浏览 |
基于涂层改性炮管寿命的研究进展
李硕1, 李希超1, 赵经香1,2,3, 戴作强1, 徐斌2,3, 孙明月2,3, 郑莉莉1()
1.青岛大学机电工程学院 动力集成及储能系统工程技术中心 电动汽车智能化动力集成技术国家地方联合工程技术中心(青岛) 青岛 266071
2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
3.中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
Research Progress on Life-extension of Gun Barrel Based on Coating Modification
LI Shuo1, LI Xichao1, ZHAO Jingxiang1,2,3, DAI Zuoqiang1, XU Bin2,3, SUN Mingyue2,3, ZHENG Lili1()
1.College of Mechanical and Electrical Engineering, Power Integration and Energy Storage System Engineering Technology Center, National and Local Joint Engineering Technology Center of Intelligent Power Integration Technology for Electric Vehicles (Qingdao), Qingdao University, Qingdao 266071, China
2.Shenyang National Research Center of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Key Laboratory of Nuclear Materials and Safety Evaluation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

李硕, 李希超, 赵经香, 戴作强, 徐斌, 孙明月, 郑莉莉. 基于涂层改性炮管寿命的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(2): 295-302.
Shuo LI, Xichao LI, Jingxiang ZHAO, Zuoqiang DAI, Bin XU, Mingyue SUN, Lili ZHENG. Research Progress on Life-extension of Gun Barrel Based on Coating Modification[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 295-302.

全文: PDF(8343 KB)   HTML
摘要: 

随着武器装备的各项指标不断提升,火炮的发展受到身管寿命的限制,目前身管寿命的延长已成为重要研究方向。本文综述了身管内膛涂层改性技术的发展历程及最新研究进展,从火炮身管的失效机理出发,指出对火炮身管内膛表面进行改造的困难。重点对Cr涂层、Ta涂层、新陶瓷涂层等一系列涂层的性能以及研究进展进行了阐述。分析对比各种涂层改性中的优缺点,旨为继续进行身管延寿技术的研究提供参考。

关键词 火炮身管寿命内堂表面改性Cr涂层Ta涂层陶瓷涂层    
Abstract

Although the relevant performance indicators of various artillery equipment have been significantly improved in recent years, the development of artillery is still limited by the service life of gun barrel. Nowadays, improving the firepower and extending the service life of artillery have become a hotspot for researchers. Therefore, more strict requirements are put forward on the ablation- and wear-resistance of the gun barrel, which has been the focus of the study on the longevity of the gun barrel. It is an effective method to improve the performance and to prolong the service life of the gun barrel by changing the material and the structure of the gun barrel. The development and recent advances in coating modification of gun barrel bore are summarized in this paper, and the performance requirements and modification related problems of the gun barrel bore are pointed out. The research progress and properties of Cr coating, Ta coating and new ceramic coatings are introduced emphatically. Then, advantages and disadvantages of various coatings are comparatively analyzed so that to provide reference for further research on life extension technology for gun barrel. Besides, the significant improvement the resistance to ablation, oxidation and wear of coatings prepared by electroplating and magnetron sputtering are introduced emphatically. The comprehensive analysis shows that the Cr coating and Ta coating prepared by electroplating and magnetron sputtering respectively have good resistance to ablation, oxidation and wear, which are the current and future research hotspots. Meanwhile, the new ceramic materials also show their advantages, namely, they present properties similar to the previous two coatings. It is also the development direction of surface modification of gun barrel bore in the future.

Key wordsartillery    tube life    interior surface modification    Cr coating    Ta coating    ceramic coating
收稿日期: 2023-03-28      32134.14.1005.4537.2023.095
ZTFLH:  TJ304  
基金资助:国家自然科学基金(52001179);山东省自然科学基金(ZR2020ME019)
通讯作者: 郑莉莉,E-mail:llzheng@qdu.edu.cn,研究方向为燃料电池双极板表面改性、锂离子电池安全性以及固态电池电解质设计优化
Corresponding author: ZHENG Lili, E-mail: llzheng@qdu.edu.cn
作者简介: 李硕,男,2000年生,硕士生
图1  火炮身管延寿主要措施[9]
图2  Cr、Cr-YSZ、Cr-CNT和Cr-YSZ-CNT涂层的横截面图像[20]
图3  MPPMS法在不锈钢表面沉积不同厚度Ta涂层的XRD图谱[21]
图4  利用MPPMS在不锈钢上沉积的厚度为2和20 μm Ta薄涂层的截面和表面形貌[21]
Type of coatingNumber of thermal shock cycleHeating temperature / oCHolding time / minFailure mode
TiAlN15700305% cracking
TiAlVN21700305% cracking
表1  TiAlN和TiAlVN膜层的抗热震性能对比[36]
图5  15次热震循环后膜层的失效照片[36]
图6  PCrNi3Mo 钢基材和磁控溅射CrAlN涂层的表面宏观形貌[38]
1 Xu J, Bo Y C. Teaching reform and practice for the course of automatic mechanism construction design[J]. Equip. Manuf. Technol., 2011, (9): 244
1 徐 健, 薄玉成. 《自动机结构设计》课程教学改革与实践[J]. 装备制造技术, 2011, (9): 244
2 Zhang X Y. Artillery Design Theory[M]. Beijing: Beijing Institute of Technology Press, 2005
2 张相炎. 火炮设计理论[M]. 北京: 北京理工大学出版社, 2005
3 Warrender J M, Mulligan C P, Underwood J H. Analysis of thermo-mechanical cracking in refractory coatings using variable pulse-duration laser pulse heating[J]. Wear, 2007, 263: 1540
doi: 10.1016/j.wear.2007.02.017
4 Li X L, Zang Y, Mu L, et al. Erosion analysis of machine gun barrel and lifespan prediction under typical shooting conditions[J]. Wear, 2020, 444/445: 203177
5 Feng G T. Study on flow field with gas leakage and temperature field of chromiun-plating barrel[D]. Nanjing: Nanjing University of Science and Technology, 2017
5 冯国铜. 镀铬枪管带泄漏的膛内流场与管壁温度场研究[D]. 南京: 南京理工大学, 2017
6 Vigilante G N, Underwood J H, Crayon D. Use of the instrumented bolt and constant displacement bold-loaded specimen to measure in-situ hydrogen crack growth in high-strength steels[J]. Fatigue Fract. Mech., 1999, 30: 377
7 Gong C H, Yang Y F, Huang L H. Modern artillery bore erosion wear mechanism and control measures[J]. J. Sichuan Ordnance, 2014, 35(11): 127
7 龚长红, 杨云飞, 黄林昊. 现代火炮炮膛烧蚀磨损机理及控制措施[J]. 四川兵工学报, 2014, 35(11): 127
8 Cote P J, Rickard C. Gas-metal reaction products in the erosion of chromium-plated gun bores[J]. Wear, 2000, 241: 17
doi: 10.1016/S0043-1648(00)00311-2
9 Mao B Q, Zhao Q J, Bai X H, et al. Review and prospect of life extension technology for gun barrels[J]. Acta Armamentarii, 2023, 44: 638
9 毛保全, 赵其进, 白向华 等. 火炮身管延寿技术研究现状与展望[J]. 兵工学报, 2023, 44: 638
10 Guo Z J. Chemical Vapor deposition technology and material preparation[J]. Low Carbon World, 2017, (27): 288
10 郭展郡. 化学气相沉积技术与材料制备[J]. 低碳世界, 2017, (27): 288
11 Cui Y H, Hu Z C, Ma Y D, et al. Porous nanostructured ZrO2 coatings prepared by plasma spraying[J]. Surf. Coat. Technol., 2019, 363: 112
doi: 10.1016/j.surfcoat.2019.02.059
12 Wang W R, Qi W, Xie L, et al. Microstructure and corrosion behavior of (CoCrFeNi)95Nb5 high-entropy alloy coating fabricated by plasma spraying[J]. Materials, 2019, 12: 694
doi: 10.3390/ma12050694
13 Zeng X A, Huang H, Zhang W, et al. Effect of arc current on microstructure and mechanical properties of Cr coatings deposited by multi-arc ion plating[J]. Rare Met. Cemented Carbides, 2017, 45(5): 53
13 曾小安, 黄 鹤, 张 文 等. 弧电流对多弧离子镀纯Cr涂层组织性能的影响[J]. 稀有金属与硬质合金, 2017, 45(5): 53
14 Pan C H, Jeng H A, Lai C H. Biomarkers of oxidative stress in electroplating workers exposed to hexavalent chromium[J]. J. Expo. Sci. Environ. Epidemiol., 2018, 28: 76
doi: 10.1038/jes.2016.85
15 Tu Z, Yang Z, Zhang J, et al. Cathode polarization in trivalent chromium plating[J]. Plat. Surf. Finish., 2014, 80: 79
16 Shaat M. Effects of processing force on performance of nano-resonators produced by magnetron sputtering deposition[J]. Physica, 2018, 104E: 42
17 Peled E, Gileadi E. Electroplating of aluminum from aromatic hydrocarbons[J]. Plat. Surf. Finish., 1975, 62: 342
18 Hamid Z A, Ghayad I M, Ibrahim K M. Electrodeposition and characterization of chromium-tungsten carbide composite coatings from a trivalent chromium bath[J]. Surf. Interface Anal., 2005, 37: 573
doi: 10.1002/(ISSN)1096-9918
19 Liu B, Zeng Z X, Lin Y M. Mechanical properties of hard Cr-MWNT composite coatings[J]. Surf. Coat. Technol., 2009, 203: 3610
doi: 10.1016/j.surfcoat.2009.05.035
20 Shukla P, Awasthi S, Ramkumar J, et al. Protective trivalent Cr-based electrochemical coatings for gun barrels[J]. J. Alloy. Compd., 2018, 768: 1039
doi: 10.1016/j.jallcom.2018.07.170
21 Sterling M, Lin J L, Souza R M, et al. The β to α phase transition of tantalum coatings deposited by modulated pulsed power magnetron sputtering[J]. Surf. Coat. Technol., 2013, 214: 38
doi: 10.1016/j.surfcoat.2012.10.061
22 Wang S, Xiong D S, Li J L, et al. Wear and erosion resistance properties of electroplating ta coating in molten salt[J]. China Surf. Eng., 2015, 28(2): 101
22 王 升, 熊党生, 李建亮 等. 熔盐电镀钽及其耐磨损烧蚀性能[J]. 中国表面工程, 2015, 28(2): 101
23 Sopok S, Rickard C, Dunn S. Thermal-chemical-mechanical gun bore erosion of an advanced artillery system part one: theories and mechanisms[J]. Wear, 2005, 258: 659
doi: 10.1016/j.wear.2004.09.031
24 Sopok S, Rickard C, Dunn S. Thermal-chemical-mechanical gun bore erosion of an advanced artillery system part two: modeling and predictions[J]. Wear, 2005, 258: 671
doi: 10.1016/j.wear.2004.09.030
25 Hu Z W, Li Z K, Zhang X M. New developments and applications of tantalum and tantalum alloys[J]. Rare Met. Lett., 2004, 23(7): 8
25 胡忠武, 李中奎, 张小明. 钽及钽合金的工业应用和进展[J]. 稀有金属快报, 2004, 23(7): 8
26 Guo R P, Wang B S. New development of coating processes for gun barrels anti-erosion in America[J]. New Technol. New Process, 2008, (9): 87
26 郭瑞萍, 王宝生. 美国炮管抗烧蚀涂层工艺技术新进展[J]. 新技术新工艺, 2008, (9): 87
27 Matson D W, McClanahan E D, Lee S L, et al. Properties of thick sputtered Ta used for protective gun tube coatings[J]. Surf. Coat. Technol., 2001, 146/147: 344
28 Chen H B, Chen D J, LI Z S, et al. Microstructure and properties of Ta coatings rapidly deposited by magnetron sputtering[J]. J. Ordnance Equip. Eng., 2018, 39(11): 156
28 陈汉宾, 陈大军, 李忠盛 等. 磁控溅射快速沉积钽涂层的组织及性能[J]. 兵器装备工程学报, 2018, 39(11): 156
29 de Rosset W S, Audino M J. Advanced gun barrel materials and manufacturing technology symposium-overview and perspective[J]. Mater. Manuf. Processes, 2006, 21: 571
doi: 10.1080/10426910600611151
30 Liu H J, Hu C, Liu Z R, et al. Research on structure, mechanical and high-temperature properties of Zr and Cr doped TiAlN coatings[J]. J. Cent. South Univ. (Sci. Technol.), 2020, 51: 3178
30 刘慧君, 胡 春, 刘喆人 等. Zr和Cr掺杂TiAlN涂层结构、力学和高温性能研究[J]. 中南大学学报(自然科学版), 2020, 51: 3178
31 Wang J T, Liu P, Li W, et al. Research progress of TiAlN hard coating[J]. Hot Work. Technol., 2010, 39(20): 104
31 王均涛, 刘 平, 李 伟 等. TiAlN硬质涂层的研究进展[J]. 热加工工艺, 2010, 39(20): 104
32 Zhang H P, Wang S R, Guo P Q. Research progress of TiAlN-based thin films[J]. Mater. Mech. Eng., 2013, 37(4): 1
32 张海平, 王守仁, 郭培全. TiAlN 基薄膜的研究进展[J]. 机械工程材料, 2013, 37(4): 1
33 Kutschej K, Fateh N, Mayrhofer P H, et al. Comparative study of Ti1-XAlX N coatings alloyed with Hf, Nb and B[J]. Surf. Coat. Technol., 2005, 200: 113
doi: 10.1016/j.surfcoat.2005.02.072
34 Fox-Rabinovich G S, Yamomoto K, Veldhuis S C, et al. Tribological adaptability of TiAlCrN PVD coatings under high performance dry machining conditions[J]. Surf. Coat. Technol., 2005, 200: 1804
doi: 10.1016/j.surfcoat.2005.08.057
35 Miletić A, Panjan P, Škorić B, et al. Microstructure and mechanical properties of nanostructured Ti-Al-Si-N coatings deposited by magnetron sputtering[J]. Soc. Coat. Technol., 2014, 241: 105
36 Wang X. Study on the preparation and properties of TiAlVN films by magnetron sputtering on the surface of gun steel[D]. Shenyang: Shenyang University of Technology, 2017
36 王 新. 炮钢表面磁控溅射制备TiAlVN膜层及性能的研究[D]. 沈阳: 沈阳工业大学, 2017
37 Riedle H, Tillmann W, Grisales D, et al. Influence of substrate pre-treatments on residual stresses and tribo-mechanical properties of TiAlN-based PVD coatings[J]. Surf. Coat. Technol., 2014, 260: 369
doi: 10.1016/j.surfcoat.2014.08.075
38 Jin H, Li D Y, Guo C A, et al. Study on mechanical property and microstructure of CrAlN coatings on PCrNi3Mo steel deposited by magnetron sputtering[J]. Foundry Technol., 2015, 36: 1467
38 金 浩, 李德元, 郭策安 等. PCrNi3Mo钢表面磁控溅射CrAlN涂层的结构及力学性能分析[J]. 铸造技术, 2015, 36: 1467
[1] 任岩, 钱余海, 张鑫涛, 徐敬军, 左君, 李美栓. 热震对包覆ZrB2-SiC-La2O3/SiC涂层渗硅石墨力学性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[2] 陈超,梁艳芬,梁天权,满泉言,罗毅东,张修海,曾建民. 稀土复合掺杂ZrO2陶瓷涂层抗Na2SO4+NaVO3热腐蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
[3] 杨波,李茂东,刘光明,汪元奎,刘康生,翟伟,黄健航. 超音速喷涂Inconel 625/NiCr合金涂层的热腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(5): 483-488.
[4] 李守彪, 许立坤,沈承金,李相波. 等离子喷涂耐冲蚀陶瓷涂层的性能研究[J]. 中国腐蚀与防护学报, 2011, 31(3): 196-201.
[5] 李春福 王 戎 牛艳花 朱泽华 李天雷. 纳米掺杂对Al2O3+13%TiO2等离子喷涂涂层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2008, 28(6期): 331-336.
[6] 斯松华 . 激光功率对WCp / Ni基金属陶瓷涂层的组织与磨损性能的影响[J]. 中国腐蚀与防护学报, 2004, 24(3): 183-187 .
[7] 李青; 陈艳 . 金属陶瓷涂层耐蚀性能及影响因素的研究[J]. 中国腐蚀与防护学报, 2000, 20(3): 167-176 .
[8] 唐兆麟;王福会;吴维. TiAlCr涂层对TiAl金属间化合物抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 1998, 18(1): 35-40.
[9] 储双杰;蒋丹宇;杨峥. 碳/碳复合材料表面等离子喷涂陶瓷涂层的抗氧化性能[J]. 中国腐蚀与防护学报, 1995, 15(2): 145-150.