|
|
湿气管道积液区X70钢CO2 局部腐蚀行为研究 |
李强1( ), 路程2, 唐颖浩3, 唐建峰2, 刘炳成1 |
1.青岛科技大学气候变迁与能源可持续发展研究院 青岛 266061 2.中国石油大学 (华东) 储运与建筑工程学院 青岛 266580 3.中国石油天然气管道工程有限公司 廊坊 065099 |
|
Localized CO2 Corrosion of X70 Steel in Water Accumulation Zone of Wet Gas Pipelines |
LI Qiang1( ), LU Cheng2, TANG Yinghao3, TANG Jianfeng2, LIU Bingcheng1 |
1.Institute of Climate and Energy Sustainable Development, Qingdao University of Science and Technology, Qingdao 266061, China 2.College of Pipeline and Civil Engineering, University of China Petroleum (East China), Qingdao 266580, China 3.China Petroleum Pipeline Engineering Corporation, Langfang 065099, China |
引用本文:
李强, 路程, 唐颖浩, 唐建峰, 刘炳成. 湿气管道积液区X70钢CO2 局部腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
LI Qiang,
LU Cheng,
TANG Yinghao,
TANG Jianfeng,
LIU Bingcheng.
Localized CO2 Corrosion of X70 Steel in Water Accumulation Zone of Wet Gas Pipelines. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 837-846.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.296
或
https://www.jcscp.org/CN/Y2023/V43/I4/837
|
1 |
Jin L. Corrosion evaluation of recycling pipe section from a subsea gas pipeline [J]. Corros. Prot., 2017, 38: 301
|
1 |
金 磊. 某海底输气管道回收段的腐蚀评价 [J]. 腐蚀与防护, 2017, 38: 301
|
2 |
Wu Q Y, Li C G, Yang J H, et al. Analysis and assessment of the result of Bonan oil & gas field subsea pipeline in-line inspection [J]. Mar. Sci., 2012, 36(10): 107
|
2 |
吴秋云, 李成钢, 杨敬红 等. 渤南油气田海底管道内检测结果分析及评价 [J]. 海洋科学, 2012, 36(10): 107
|
3 |
Rastogi A, Fan Y L. Experimental and modeling study of onset of liquid accumulation [J]. J. Nat. Gas Sci. Eng., 2020, 73: 103064
doi: 10.1016/j.jngse.2019.103064
|
4 |
NACE SP0110-2018 Wet gas internal corrosion direct assessment methodology for pipelines [S]. NACE International, 2018
|
5 |
Hauguel R, Lajoie A, Carimalo F, et al. Water accumulation assessment in wet gas pipelines [A]. CORROSION 2008 [C]. New Orleans, Louisiana: NACE International, 2008
|
6 |
Zhang H Q, Sarica C. Low liquid loading gas/liquid pipe flow [J]. J. Nat. Gas Sci. Eng., 2011, 3: 413
doi: 10.1016/j.jngse.2011.03.001
|
7 |
Guan X R, Jin Y H, Wang J J, et al. Progress in investigating gas-liquid flow and CO2 corrosion in gas transmission pipelines with low liquid loading [J]. Chem. Eng. Mach., 2017, 44: 245
|
7 |
管孝瑞, 金有海, 王建军 等. 低含液输气管线内两相流动及其CO2腐蚀研究进展 [J]. 化工机械, 2017, 44: 245
|
8 |
Wang R L, Lee B A, Lee J S, et al. Analytical estimation of liquid film thickness in two-phase annular flow using electrical resistance measurement [J]. Appl. Math. Model., 2012, 36: 2833
doi: 10.1016/j.apm.2011.09.069
|
9 |
Li J B, Wang S L, Chen H, et al. Numerical simulation of slug formation characteristics of the liquid loading in the gas-liquid multiphase pipeline in rolling terrain [J]. Oil-Gas Field Surf. Eng., 2017, 36(10): 12
|
9 |
李靖博, 王树立, 陈 虎 等. 气液混输起伏管积液起塞特征数值模拟 [J]. 油气田地面工程, 2017, 36(10): 12
|
10 |
Liu X Q, Li Y X, Li S L, et al. Liquid holdup distribution laws and critical inclination angle model of undulating wet gas pipelines [J]. Oil Gas Storage Transp., 2017, 36: 177
|
10 |
刘晓倩, 李玉星, 李顺丽 等. 起伏湿气管道持液率分布规律及临界倾角模型 [J]. 油气储运, 2017, 36: 177
|
11 |
Yang Y, Li J B, Wang S L, et al. Gas-liquid two-phase flow behavior in terrain-inclined pipelines for gathering transport system of wet natural gas [J]. Int. J. Pres. Ves. Pip., 2018, 162: 52
doi: 10.1016/j.ijpvp.2018.03.005
|
12 |
Yang Y, Li J B, Wang S L, et al. Understanding the formation process of the liquid slug in a hilly-terrain wet natural gas pipeline [J]. J. Environ. Chem. Eng., 2017, 5: 4220
doi: 10.1016/j.jece.2017.08.010
|
13 |
Wang D X, Hu Q H, Li Y X, et al. Study on the characteristics of slug flow in V-type pipeline with great angle [J]. Sci. Technol. Eng., 2020, 20: 11574
|
13 |
王冬旭, 胡其会, 李玉星 等. 大起伏角度下V形管道段塞流流型特性 [J]. 科学技术与工程, 2020, 20: 11574
|
14 |
Wang B C. Liquid-carrying theory and drainage technology of undulating wet-gas pipelines [D]. Qingdao: China University of Petroleum (East China), 2018
|
14 |
王报春. 起伏湿气集输管道携液理论与排液技术研究 [D]. 青岛: 中国石油大学(华东), 2018
|
15 |
Jepson W P, Kang C, Wilkens R. The effect of slug frequency on corrosion in high pressure, inclined pipelines [A]. CORROSION 96 [C]. Denver, Colorado: NACE International, 1996
|
16 |
Cui M W. Study on CO2 internal corrosion and residual strength of multiphase offshore pipeline [D]. Qingdao: China University of Petroleum (East China), 2014
|
16 |
崔铭伟. 多相流海管CO2内腐蚀及剩余强度研究 [D]. 青岛: 中国石油大学(华东), 2014
|
17 |
Zheng D H, Che D F, He L, et al. Effect of slug flow on CO2 corrosion of pipeline in oil and gas industry [J]. Corros. Prot., 2007, 28: 77
|
17 |
郑东宏, 车得福, 贺 林 等. 油气管道CO2腐蚀过程中弹状流的影响 [J]. 腐蚀与防护, 2007, 28: 77
|
18 |
Zheng D H, Che D F, Liu Y H. Experimental investigation on gas-liquid two-phase slug flow enhanced carbon dioxide corrosion in vertical upward pipeline [J]. Corros. Sci., 2008, 50: 3005
doi: 10.1016/j.corsci.2008.08.006
|
19 |
Green A S, Johnson B V, Choi H J. Flow-related corrosion in large-diameter multiphase flowlines [J]. SPE Prod. Facil., 1993, 8: 97
doi: 10.2118/20685-PA
|
20 |
Yang Y. CO2 corrosion behavior of subsea wet gas pipelines under different wetting conditions [D]. Chengdu: West South Petroleum University, 2019
|
20 |
杨 雨. 不同润湿状态下海底湿气管道CO2腐蚀行为研究 [D]. 成都: 西南石油大学, 2019
|
21 |
China University of Petroleum (East China). Multi-channel galvanic corrosion test system and method based on micro electrode array [P]. Chin Patent, 201210477941.5, 2013
|
21 |
中国石油大学(华东). 基于微电极阵列的多通道电偶腐蚀测试系统及测试方法 [P]. 中国专利, 201210477941.5, 2013)
|
22 |
Dong Z H, Shi W, Guo X P. Localized corrosion inhibition of carbon steel in carbonated concrete pore solutions using wire beam electrodes [J]. Acta Phys.-Chim. Sin., 2011, 27: 127
doi: 10.3866/PKU.WHXB20110110
|
22 |
董泽华, 石 维, 郭兴蓬. 用丝束电极研究模拟碳化混凝土孔隙液中缓蚀剂对碳钢局部腐蚀的抑制行为 [J]. 物理化学学报, 2011, 27: 127
|
23 |
Bockris J O M, Drazic D, Despic A R. The electrode kinetics of the deposition and dissolution of iron [J]. Electrochim. Acta, 1961, 4: 325
doi: 10.1016/0013-4686(61)80026-1
|
24 |
Zhang G A, Cheng Y F. On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production [J]. Corros. Sci., 2009, 51: 87
doi: 10.1016/j.corsci.2008.10.013
|
25 |
Xie D M, Tong S P, Cao J L. Fundamental Knowledge of Applied Electrochemistry [M]. Beijing: Chemical Industry Press, 2013
|
25 |
谢德明, 童少平, 曹江林. 应用电化学基础 [M]. 北京: 化学工业出版社, 2013
|
26 |
Li Q, Zhang Y Y, Liu G, et al. CO2 corrosion mechanism of pure Fe under action of uniform water film [J]. J. China Univ. Pet. (Ed. Nat. Sci.), 2020, 44(3): 155
|
26 |
李 强, 张玉瑜, 刘 刚 等. 纯铁在均匀液膜下的CO2腐蚀机制 [J]. 中国石油大学学报(自然科学版), 2020, 44(3): 155
|
27 |
Bai H T, Yang M, Dong X W, et al. Research progress on CO2 corrosion product scales of carbon steels [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 295
|
27 |
白海涛, 杨 敏, 董小卫 等. CO2腐蚀产物膜的研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 295
doi: 10.11902/1005.4537.2019.150
|
28 |
Barker R, Burkle D, Charpentier T, et al. A review of iron carbonate (FeCO3) formation in the oil and gas industry [J]. Corros. Sci., 2018, 142: 312
doi: 10.1016/j.corsci.2018.07.021
|
29 |
Han J B, Yang Y, Brown B, et al. Electrochemical investigation of localized CO2 corrosion on mild steel [A]. CORROSION 2007 [C]. Houston, Texas: NACE International, 2007
|
30 |
Ming N X, Wang Q S, He C, et al. Effect of temperature on corrosion behavior of X70 steel in an artificial CO2-containing formation water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 233
|
30 |
明男希, 王岐山, 何 川 等. 温度对X70钢在含CO2地层水中腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2021, 41: 233
doi: 10.11902/1005.4537.2020.049
|
31 |
Li Q, Cheng Y F. Modeling of corrosion of steel tubing in CO2 storage [J]. Greenhouse Gas. Sci. Technol., 2016, 6: 797
doi: 10.1002/ghg.2016.6.issue-6
|
32 |
Ge P L, Zeng W G, Xiao W W, et al. Effect of applied stress and medium flow on corrosion behavior of carbon steel in H2S/CO2 coexisting environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 271
|
32 |
葛鹏莉, 曾文广, 肖雯雯 等. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 271
doi: 10.11902/1005.4537.2020.025
|
33 |
Zhao Y, Cao J Y, Fang Z G, et al. Corrosion behavior of A517Gr.Q marine steel in simulated corrosive condition of marine splashing zone [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 921
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|