Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (4): 837-846     CSTR: 32134.14.1005.4537.2022.296      DOI: 10.11902/1005.4537.2022.296
  曹楚南科教基金优秀论文专栏 本期目录 | 过刊浏览 |
湿气管道积液区X70CO2 局部腐蚀行为研究
李强1(), 路程2, 唐颖浩3, 唐建峰2, 刘炳成1
1.青岛科技大学气候变迁与能源可持续发展研究院 青岛 266061
2.中国石油大学 (华东) 储运与建筑工程学院 青岛 266580
3.中国石油天然气管道工程有限公司 廊坊 065099
Localized CO2 Corrosion of X70 Steel in Water Accumulation Zone of Wet Gas Pipelines
LI Qiang1(), LU Cheng2, TANG Yinghao3, TANG Jianfeng2, LIU Bingcheng1
1.Institute of Climate and Energy Sustainable Development, Qingdao University of Science and Technology, Qingdao 266061, China
2.College of Pipeline and Civil Engineering, University of China Petroleum (East China), Qingdao 266580, China
3.China Petroleum Pipeline Engineering Corporation, Langfang 065099, China
全文: PDF(12151 KB)   HTML
摘要: 

自行设计搭建了可模拟开展管道积液区CO2局部腐蚀测试的实验装置,借助丝束电极测试系统,获取倾斜管道不同部位的腐蚀电位与耦合电流,分析探讨了管线积液区的局部腐蚀行为机制。结果表明:在不同的管道结构、气体流动参数条件下,积液区管道内均呈现出局部腐蚀特征,并随着时间延长向局部区域集中。在本文的研究条件下,气体流速为2 m/s,管道倾角为30°时,局部腐蚀最为严重。液膜厚度的不均匀分布程度、波浪流经的频次大小、腐蚀产物膜的生成情况等共同影响局部腐蚀过程,其中波浪频次和腐蚀产物膜对腐蚀的影响最为显著。

关键词 CO2局部腐蚀积液区非稳态流动液膜X70钢腐蚀产物    
Abstract

The free corrosion potential and galvanic corrosion current of different spots of an inclined pipeline were assessed via a home-made device, aiming to simulate the CO2 induced localized-corrosion emerged at the area with standing water of an inclined pipeline of X70 steel for transporting wet gas, with an electrode composed with a bundle of isolated wires of matrix-like distribution as measuring electrodes. So that to illustrate the relevant localized corrosion mechanism. The results showed that localized corrosion happens for different pipeline structure by different gas flow conditions. What is more, the localized corrosion became more concentrated when the exposure time was elongated. The most severe localized corrosion was seen when the gas flow velocity was 2 m/s and the pipeline had an inclined angle of 30°. Amongst the three factors, including the extent of non-uniformity of water film thickness, frequency of waves arisen by the high velocity gas flow and the formation of corrosion film, that affected the corrosion process, wave frequency and corrosion film had the most influential effect.

Key wordsCO2 localized corrosion    water accumulation zone    non-steady flow    water film    X70 steel    corrosion product
收稿日期: 2022-09-24      32134.14.1005.4537.2022.296
ZTFLH:  TG174  
基金资助:山东省自然科学基金(ZR2019BEE040);中央高校基本科研费用专项资金(18CX02001A)
通讯作者: 李强,E-mail: qiangli@qust.edu.cn,研究方向为天然气管道的腐蚀与防护   
Corresponding author: LI Qiang, E-mail: qiangli@qust.edu.cn   
作者简介: 李 强,男,1988年生,博士,讲师,中国石油大学 (华东) 硕士学位,加拿大卡尔加里大学机械与制造工程专业博士学位,师从欧盟科学院院士Frank Cheng教授,现青岛科技大学气候变迁与能源可持续发展研究院开展博士后研究工作,研究方向为管道腐蚀与防护、腐蚀建模及预测。近年来,主持山东省自然科学基金1 项,骨干参与国家自然科学基金面上基金2 项,主持、参与各类企事业单位项目10 余项;以第一作者/通讯作者发表SCI、EI收录研究论文10 篇。2022年获得曹楚南科教基金优秀论文奖。

引用本文:

李强, 路程, 唐颖浩, 唐建峰, 刘炳成. 湿气管道积液区X70CO2 局部腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
LI Qiang, LU Cheng, TANG Yinghao, TANG Jianfeng, LIU Bingcheng. Localized CO2 Corrosion of X70 Steel in Water Accumulation Zone of Wet Gas Pipelines. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 837-846.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.296      或      https://www.jcscp.org/CN/Y2023/V43/I4/837

图1  模拟积液区CO2局部腐蚀试验装置示意图
图2  实验丝束电极示意图
图3  不同倾角下的耦合电流测试结果
图4  不同倾角管内积液流动状态
图5  不同气体流速下的耦合电流测试结果
图6  不同气体流速管内积液流动状态
图7  不同腐蚀时间条件下耦合电流分布结果
图8  典型位置处电极丝的EIS及其等效电路图
No.RSΩ·cm2CPE-Y0Ω-1·s-n ·cm-2CPE-nRctΩ·cm2LH·cm2RLΩ·cm2
1410.950.0011390.897496.92722.2211.9
2212.480.0018490.894133.31143417.8
519.4290.0018570.855172.93547174.2
表1  各不同位置处电极丝的EIS拟合结果
图9  丝束电极C在不同腐蚀时间后的腐蚀形貌
图10  腐蚀168 h后不同位置处电极丝腐蚀形貌
1 Jin L. Corrosion evaluation of recycling pipe section from a subsea gas pipeline [J]. Corros. Prot., 2017, 38: 301
1 金 磊. 某海底输气管道回收段的腐蚀评价 [J]. 腐蚀与防护, 2017, 38: 301
2 Wu Q Y, Li C G, Yang J H, et al. Analysis and assessment of the result of Bonan oil & gas field subsea pipeline in-line inspection [J]. Mar. Sci., 2012, 36(10): 107
2 吴秋云, 李成钢, 杨敬红 等. 渤南油气田海底管道内检测结果分析及评价 [J]. 海洋科学, 2012, 36(10): 107
3 Rastogi A, Fan Y L. Experimental and modeling study of onset of liquid accumulation [J]. J. Nat. Gas Sci. Eng., 2020, 73: 103064
doi: 10.1016/j.jngse.2019.103064
4 NACE SP0110-2018 Wet gas internal corrosion direct assessment methodology for pipelines [S]. NACE International, 2018
5 Hauguel R, Lajoie A, Carimalo F, et al. Water accumulation assessment in wet gas pipelines [A]. CORROSION 2008 [C]. New Orleans, Louisiana: NACE International, 2008
6 Zhang H Q, Sarica C. Low liquid loading gas/liquid pipe flow [J]. J. Nat. Gas Sci. Eng., 2011, 3: 413
doi: 10.1016/j.jngse.2011.03.001
7 Guan X R, Jin Y H, Wang J J, et al. Progress in investigating gas-liquid flow and CO2 corrosion in gas transmission pipelines with low liquid loading [J]. Chem. Eng. Mach., 2017, 44: 245
7 管孝瑞, 金有海, 王建军 等. 低含液输气管线内两相流动及其CO2腐蚀研究进展 [J]. 化工机械, 2017, 44: 245
8 Wang R L, Lee B A, Lee J S, et al. Analytical estimation of liquid film thickness in two-phase annular flow using electrical resistance measurement [J]. Appl. Math. Model., 2012, 36: 2833
doi: 10.1016/j.apm.2011.09.069
9 Li J B, Wang S L, Chen H, et al. Numerical simulation of slug formation characteristics of the liquid loading in the gas-liquid multiphase pipeline in rolling terrain [J]. Oil-Gas Field Surf. Eng., 2017, 36(10): 12
9 李靖博, 王树立, 陈 虎 等. 气液混输起伏管积液起塞特征数值模拟 [J]. 油气田地面工程, 2017, 36(10): 12
10 Liu X Q, Li Y X, Li S L, et al. Liquid holdup distribution laws and critical inclination angle model of undulating wet gas pipelines [J]. Oil Gas Storage Transp., 2017, 36: 177
10 刘晓倩, 李玉星, 李顺丽 等. 起伏湿气管道持液率分布规律及临界倾角模型 [J]. 油气储运, 2017, 36: 177
11 Yang Y, Li J B, Wang S L, et al. Gas-liquid two-phase flow behavior in terrain-inclined pipelines for gathering transport system of wet natural gas [J]. Int. J. Pres. Ves. Pip., 2018, 162: 52
doi: 10.1016/j.ijpvp.2018.03.005
12 Yang Y, Li J B, Wang S L, et al. Understanding the formation process of the liquid slug in a hilly-terrain wet natural gas pipeline [J]. J. Environ. Chem. Eng., 2017, 5: 4220
doi: 10.1016/j.jece.2017.08.010
13 Wang D X, Hu Q H, Li Y X, et al. Study on the characteristics of slug flow in V-type pipeline with great angle [J]. Sci. Technol. Eng., 2020, 20: 11574
13 王冬旭, 胡其会, 李玉星 等. 大起伏角度下V形管道段塞流流型特性 [J]. 科学技术与工程, 2020, 20: 11574
14 Wang B C. Liquid-carrying theory and drainage technology of undulating wet-gas pipelines [D]. Qingdao: China University of Petroleum (East China), 2018
14 王报春. 起伏湿气集输管道携液理论与排液技术研究 [D]. 青岛: 中国石油大学(华东), 2018
15 Jepson W P, Kang C, Wilkens R. The effect of slug frequency on corrosion in high pressure, inclined pipelines [A]. CORROSION 96 [C]. Denver, Colorado: NACE International, 1996
16 Cui M W. Study on CO2 internal corrosion and residual strength of multiphase offshore pipeline [D]. Qingdao: China University of Petroleum (East China), 2014
16 崔铭伟. 多相流海管CO2内腐蚀及剩余强度研究 [D]. 青岛: 中国石油大学(华东), 2014
17 Zheng D H, Che D F, He L, et al. Effect of slug flow on CO2 corrosion of pipeline in oil and gas industry [J]. Corros. Prot., 2007, 28: 77
17 郑东宏, 车得福, 贺 林 等. 油气管道CO2腐蚀过程中弹状流的影响 [J]. 腐蚀与防护, 2007, 28: 77
18 Zheng D H, Che D F, Liu Y H. Experimental investigation on gas-liquid two-phase slug flow enhanced carbon dioxide corrosion in vertical upward pipeline [J]. Corros. Sci., 2008, 50: 3005
doi: 10.1016/j.corsci.2008.08.006
19 Green A S, Johnson B V, Choi H J. Flow-related corrosion in large-diameter multiphase flowlines [J]. SPE Prod. Facil., 1993, 8: 97
doi: 10.2118/20685-PA
20 Yang Y. CO2 corrosion behavior of subsea wet gas pipelines under different wetting conditions [D]. Chengdu: West South Petroleum University, 2019
20 杨 雨. 不同润湿状态下海底湿气管道CO2腐蚀行为研究 [D]. 成都: 西南石油大学, 2019
21 China University of Petroleum (East China). Multi-channel galvanic corrosion test system and method based on micro electrode array [P]. Chin Patent, 201210477941.5, 2013
21 中国石油大学(华东). 基于微电极阵列的多通道电偶腐蚀测试系统及测试方法 [P]. 中国专利, 201210477941.5, 2013)
22 Dong Z H, Shi W, Guo X P. Localized corrosion inhibition of carbon steel in carbonated concrete pore solutions using wire beam electrodes [J]. Acta Phys.-Chim. Sin., 2011, 27: 127
doi: 10.3866/PKU.WHXB20110110
22 董泽华, 石 维, 郭兴蓬. 用丝束电极研究模拟碳化混凝土孔隙液中缓蚀剂对碳钢局部腐蚀的抑制行为 [J]. 物理化学学报, 2011, 27: 127
23 Bockris J O M, Drazic D, Despic A R. The electrode kinetics of the deposition and dissolution of iron [J]. Electrochim. Acta, 1961, 4: 325
doi: 10.1016/0013-4686(61)80026-1
24 Zhang G A, Cheng Y F. On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production [J]. Corros. Sci., 2009, 51: 87
doi: 10.1016/j.corsci.2008.10.013
25 Xie D M, Tong S P, Cao J L. Fundamental Knowledge of Applied Electrochemistry [M]. Beijing: Chemical Industry Press, 2013
25 谢德明, 童少平, 曹江林. 应用电化学基础 [M]. 北京: 化学工业出版社, 2013
26 Li Q, Zhang Y Y, Liu G, et al. CO2 corrosion mechanism of pure Fe under action of uniform water film [J]. J. China Univ. Pet. (Ed. Nat. Sci.), 2020, 44(3): 155
26 李 强, 张玉瑜, 刘 刚 等. 纯铁在均匀液膜下的CO2腐蚀机制 [J]. 中国石油大学学报(自然科学版), 2020, 44(3): 155
27 Bai H T, Yang M, Dong X W, et al. Research progress on CO2 corrosion product scales of carbon steels [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 295
27 白海涛, 杨 敏, 董小卫 等. CO2腐蚀产物膜的研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 295
doi: 10.11902/1005.4537.2019.150
28 Barker R, Burkle D, Charpentier T, et al. A review of iron carbonate (FeCO3) formation in the oil and gas industry [J]. Corros. Sci., 2018, 142: 312
doi: 10.1016/j.corsci.2018.07.021
29 Han J B, Yang Y, Brown B, et al. Electrochemical investigation of localized CO2 corrosion on mild steel [A]. CORROSION 2007 [C]. Houston, Texas: NACE International, 2007
30 Ming N X, Wang Q S, He C, et al. Effect of temperature on corrosion behavior of X70 steel in an artificial CO2-containing formation water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 233
30 明男希, 王岐山, 何 川 等. 温度对X70钢在含CO2地层水中腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2021, 41: 233
doi: 10.11902/1005.4537.2020.049
31 Li Q, Cheng Y F. Modeling of corrosion of steel tubing in CO2 storage [J]. Greenhouse Gas. Sci. Technol., 2016, 6: 797
doi: 10.1002/ghg.2016.6.issue-6
32 Ge P L, Zeng W G, Xiao W W, et al. Effect of applied stress and medium flow on corrosion behavior of carbon steel in H2S/CO2 coexisting environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 271
32 葛鹏莉, 曾文广, 肖雯雯 等. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 271
doi: 10.11902/1005.4537.2020.025
33 Zhao Y, Cao J Y, Fang Z G, et al. Corrosion behavior of A517Gr.Q marine steel in simulated corrosive condition of marine splashing zone [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 921
[1] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[2] 幸雪松, 范白涛, 朱新宇, 张俊莹, 陈长风. 低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[3] 周志平, 吴大康, 张宏福, 张磊, 李明星, 张志鑫, 钟显康. 高温下L80钢的断裂机理及CO2/H2S模拟工况下的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[4] 王晓, 刘峰, 李焰, 张威, 李相波. 静态和动态海水中B10铜镍合金管的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[5] 李晗, 刘元海, 赵连红, 崔中雨. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.
[6] 王小红, 李子硕, 唐御峰, 谭浩, 蒋焰罡. CO2-H2S-Cl-共存的地层水环境中Cr含量对钢的腐蚀产物膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1043-1050.
[7] 薛芳, 刘两雨, 谭龙. Q235钢在不同浓度碳酸氢钠溶液中的有氧腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
[8] 冯丽, 张胜涛, 郑思远, 胡志勇, 朱海林, 马雪梅. 卤素阴离子对离子液体缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 791-797.
[9] 王通, 孟惠民, 葛鹏飞, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 2Cr-1Ni-1.2Mo-0.2V钢在NH4H2PO4溶液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[10] 李鸿瑾, 王歧山, 廖子涵, 孙祥锐, 孙晖, 张新阳, 陈旭. X70钢及其焊缝在含Cl-高pH值溶液中电化学噪声行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 60-66.
[11] 王家明, 杨昊东, 杜敏, 彭文山, 陈翰林, 郭为民, 蔺存国. B10铜镍合金在高浓度NH4+污染海水中腐蚀研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 609-616.
[12] 陈文娟, 方莲, 潘刚. O3/SO2复合大气环境中Q235B钢的腐蚀演化特性[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
[13] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[14] 张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[15] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.