Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (5): 791-797    DOI: 10.11902/1005.4537.2021.218
  研究报告 本期目录 | 过刊浏览 |
卤素阴离子对离子液体缓蚀性能的影响
冯丽1,2(), 张胜涛3, 郑思远1, 胡志勇1, 朱海林1, 马雪梅1
1.中北大学化学工程与技术学院 太原 030051
2.中北大学德州研究生分院 德州 253034
3.重庆大学化学化工学院 重庆 401331
Effect of Halogen Anions on Corrosion Inhibition of Ionic Liquids
FENG Li1,2(), ZHANG Shengtao3, ZHENG Siyuan1, HU Zhiyong1, ZHU Hailin1, MA Xuemei1
1.School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
2.Dezhou Graduate School, North University of China, Dezhou 253034, China
3.School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
全文: PDF(2966 KB)   HTML
摘要: 

通过电化学阻抗谱、极化曲线、扫描电镜和原子力显微镜等测试对比了不同卤素阴离子的咪唑基离子液体对X70钢在0.5 mol/L H2SO4溶液中的缓蚀性能。结果表明,它们都属于混合型缓蚀剂,均可以有效地抑制X70钢的腐蚀;且随着缓蚀剂浓度的增大,缓蚀效率逐渐增大;在浓度为5 mmol/L时,缓蚀效率达到最大。1-乙烯基-3-丁基咪唑碘盐 ([VBIM]I) 的缓蚀效率最高,其次为1-乙烯基-3-丁基咪唑氯盐 ([VBIM]Cl),而1-乙烯基-3-丁基咪唑溴盐 ([VBIM]Br) 的最低,这主要归因于I-的特异性吸附。所研究离子液体缓蚀剂的阴离子和阳离子之间存在协同缓蚀作用,即离子液体的阴离子和阳离子都参与了对金属的缓蚀。

关键词 缓蚀剂离子液体硫酸电化学X70钢形貌分析    
Abstract

The corrosion inhibition performance of imidazolidyl ionic liquids with different halogen anions (such as 1-vinyl-3-butyl-imidazolium chloride salt, [VBIM]Cl, 1-vinyl-3-butylimidazolium bromide, [VBIM]Br, and 1-vinyl-3-butylimidazolium iodide, [VBIM]I) on X70 steel in 0.5 mol/L H2SO4 solution was comparatively assessed by electrochemical impedance spectroscopy, polarization curve measurement, scanning electron microscopy and atomic force microscopy. The results indicated that they were all the mixed corrosion inhibitor and could effectively inhibit the corrosion of X70 steel in 0.5 mol/L H2SO4 solution. With the increase of the concentration of corrosion inhibitors, the corrosion inhibition efficiency increases gradually. And the inhibition efficiency reached the maximum by the concentration of 5 mmol/L. The corrosion inhibition efficiency of the inhibitors may be ranked as the follows: [VBIM]I is higher than [VBIM]Cl and [VBIM]Br in turn, which is mainly due to the specific adsorption of I-. The inhibition mechanism may be described as that there is a synergistic inhibition effect between the cation and anion of the studied ionic liquid corrosion inhibitors. In other words, both the anions and cations of ionic liquid can participate in the corrosion inhibition process of metal.

Key wordscorrosion inhibitor    Ionic liquid    sulfuric acid    electrochemistry    X70 steel    morphology analysis
收稿日期: 2021-08-30     
ZTFLH:  TG174  
基金资助:国家自然科学基金(201878029)
通讯作者: 冯丽     E-mail: 20200164@nuc.edu.cn
Corresponding author: FENG Li     E-mail: 20200164@nuc.edu.cn
作者简介: 冯丽,女,1992年生,博士

引用本文:

冯丽, 张胜涛, 郑思远, 胡志勇, 朱海林, 马雪梅. 卤素阴离子对离子液体缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 791-797.
Li FENG, Shengtao ZHANG, Siyuan ZHENG, Zhiyong HU, Hailin ZHU, Xuemei MA. Effect of Halogen Anions on Corrosion Inhibition of Ionic Liquids. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 791-797.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.218      或      https://www.jcscp.org/CN/Y2022/V42/I5/791

图1  咪唑基离子液体缓蚀剂的化学结构
图2  拟合含和不含感抗阻抗数据所用的等效电路
图3  X70钢电极在不同浓度[VBIM]Cl、[VBIM]Br和[VBIM]I的0.5 mol/L H2SO4溶液中的Nyquist和Bode图
InhibitorC / mmol·L-1Rs / Ω·cm2Y0 / 10-5 Ω·cm2nCdl / μF·cm-2Rct / Ω·cm2L / Ω·cm2RL / Ω·cm2η / %
Blank00.9317.750.9098.523.7071.0181.0---
[VBIM]Cl0.11.1817.650.8994.529.30222.4152.019.1
0.51.2117.250.8694.354.53346.3460.456.5
11.4216.130.8587.075.16297.2395.468.5
21.0916.520.8383.181.24551.6495.170.8
51.3517.180.8080.9108.40961.5593.678.1
[VBIM]Br0.11.2217.610.8998.124.80144.1112.74.4
0.50.9316.940.9096.029.45284.8148.519.5
11.6714.710.8595.732.07105.9183.626.1
21.6813.810.9494.937.24588.0225.636.4
51.3712.440.8284.758.81176.2406.459.7
[VBIM]I0.10.7715.930.9090.849.40100.1347.052.0
0.50.7413.720.8879.8140.90155.5567.083.2
10.9010.060.8758.2285.60------90.8
20.677.330.8947.7402.20------94.1
51.025.510.9139.9669.10------96.5
表1  X70钢电极在不同浓度[VBIM]Cl、[VBIM]Br和[VBI M]I的 0.5 mol/L H2SO4溶液中的电化学阻抗数据
图4  X70钢电极在含不同浓度[VBIM]Cl、[VBIM]Br和[VBIM]I的0.5 mol/L H2SO4溶液中的极化曲线图
InhibitorC / mmol·L-1Ecorr SCE / VIcorr / mA·cm-2-βc / mV·dec-1βa / mV·dec-1η / %
Blank0-0.4771.840168.4101.6---
[VBIM]Cl0.1-0.4681.463167.0108.020.5
0.5-0.4610.588156.487.668.0
1-0.4660.374146.183.479.7
2-0.4610.363152.577.180.3
5-0.4630.286151.976.884.5
[VBIM]Br0.10.4681.738166.9114.15.5
0.5-0.4691.415164.998.423.1
1-0.4701.332167.2104.727.6
2-0.4701.227173.2114.633.3
5-0.4710.579153.992.168.5
[VBIM]I0.1-0.4780.747145.091.959.4
0.5-0.4530.249134.9102.886.5
1-0.4330.086130.2105.495.4
2-0.4260.027131.248.997.9
5-0.3990.010140.537.499.4
表2  X70钢电极在含不同浓度[VBIM]Cl、[VBIM]Br和[VBIM]I的0.5 mol/L H2SO4溶液中的极化曲线参数
图5  X70钢电极在不含和含有 5 mmol/L [VBIM]Cl、[VBIM]Br和[VBIM]I的0.5 mol/L H2SO4溶液中浸泡4 h后的SEM形貌
图6  X70钢电极在不含和含有5 mmol/L [VBIM]Cl、[VBIM]Br和[VBIM]I的0.5 mol/L H2SO4溶液中浸泡4 h后的AFM形貌
图7  离子液体缓蚀机理示意图
1 Qiang Y J, Zhang S T, Tan B C, et al. Evaluation of Ginkgo leaf extract as an eco-friendly corrosion inhibitor of X70 steel in HCl solution [J]. Corros. Sci., 2018, 133: 6
2 Zhang H H, Chen Y. Experimental and theoretical studies of benzaldehyde thiosemicarbazone derivatives as corrosion inhibitors for mild steel in acid media [J]. J. Mol. Struct., 2019, 1177: 90
doi: 10.1016/j.molstruc.2018.09.048
3 Wang Q H, Tan B C, Bao H B, et al. Evaluation of Ficus tikoua leaves extract as an eco-friendly corrosion inhibitor for carbon steel in HCl media [J]. Bioelectrochemistry, 2019, 128: 49
doi: 10.1016/j.bioelechem.2019.03.001
4 Murmu M, Saha S K, Murmu N C, et al. Effect of stereochemical conformation into the corrosion inhibitive behaviour of double azomethine based Schiff bases on mild steel surface in 1 mol L-1 HCl medium: an experimental, density functional theory and molecular dynamics simulation study [J]. Corros. Sci., 2019, 146: 134
doi: 10.1016/j.corsci.2018.10.002
5 Fedel M, Poelman M, Olivier M, et al. Sebacic acid as corrosion inhibitor for hot-dip galvanized (HDG) steel in 0.1 M NaCl [J]. Surf. Interface Anal., 2019, 51: 541
doi: 10.1002/sia.6617
6 Luo X H, Ci C G, Li J, et al. 4-aminoazobenzene modified natural glucomannan as a green eco-friendly inhibitor for the mild steel in 0.5 M HCl solution [J]. Corros. Sci., 2019, 151: 132
doi: 10.1016/j.corsci.2019.02.027
7 Wang J L, Hou B S, Xiang J, et al. The performance and mechanism of bifunctional biocide sodium pyrithione against sulfate reducing bacteria in X80 carbon steel corrosion [J]. Corros. Sci., 2019, 150: 296
8 Wu X C, Wiame F, Maurice V, et al. 2-Mercaptobenzothiazole corrosion inhibitor deposited at ultra-low pressure on model copper surfaces [J]. Corros. Sci., 2020, 166: 108464
doi: 10.1016/j.corsci.2020.108464
9 Huang H L, Bu F R. Correlations between the inhibition performances and the inhibitor structures of some azoles on the galvanic corrosion of copper coupled with silver in artificial seawater [J]. Corros. Sci., 2020, 165: 108413
doi: 10.1016/j.corsci.2019.108413
10 Cui G D, Guo J X, Zhang Y, et al. Chitosan oligosaccharide derivatives as green corrosion inhibitors for P110 steel in a carbon-dioxide-saturated chloride solution [J]. Carbohyd. Polym., 2019, 203: 386
doi: 10.1016/j.carbpol.2018.09.038
11 Arkhipushkin I A, Agafonkina M O, Kazansky L P, et al. Characterization of adsorption of 5-carboxy-3-amino-1,2,4-triazole towards copper corrosion prevention in neutral media [J]. Electrochim. Acta, 2019, 308: 392
doi: 10.1016/j.electacta.2019.04.014
12 Singh A, Ansari K R, Haque J, et al. Effect of electron donating functional groups on corrosion inhibition of mild steel in hydrochloric acid: experimental and quantum chemical study [J]. J. Taiwan Inst. Chem. Eng., 2018, 82: 233
doi: 10.1016/j.jtice.2017.09.021
13 Han Y F, Duan G Q, Wu F L, et al. Latest research progress of environmentally friendly corrosion inhibitors [J]. Total Corros. Control, 2016, 30(5): 57
13 韩跃飞, 段国强, 吴风岭 等. 环境友好型缓蚀剂的最新研究进展[J]. 全面腐蚀控制, 2016, 30(5): 57
14 Ma Y, Han F, Li Z, et al. Acidic-functionalized ionic liquid as corrosion inhibitor for 304 stainless steel in aqueous sulfuric acid [J]. ACS Sustainable Chem. Eng., 2016, 4: 5046
doi: 10.1021/acssuschemeng.6b01492
15 Verma C, Obot I B, Bahadur I, et al. Choline based ionic liquids as sustainable corrosion inhibitors on mild steel surface in acidic medium: gravimetric, electrochemical, surface morphology, DFT and Monte Carlo simulation studies [J]. Appl. Surf. Sci., 2018, 457: 134
doi: 10.1016/j.apsusc.2018.06.035
16 Likhanova N V, Arellanes-Lozada P, Olivares-Xometl O, et al. Effect of organic anions on ionic liquids as corrosion inhibitors of steel in sulfuric acid solution [J]. J. Mol. Liq., 2019, 279: 267
doi: 10.1016/j.molliq.2019.01.126
17 Feng L, Zhang S T, Qiang Y J, et al. The synergistic corrosion inhibition study of different chain lengths ionic liquids as green inhibitors for X70 steel in acidic medium [J]. Mater. Chem. Phys., 2018, 215: 229
doi: 10.1016/j.matchemphys.2018.04.054
18 Zaky M T, Nessim M I, Deyab M A. Synthesis of new ionic liquids based on dicationic imidazolium and their anti-corrosion performances [J]. J. Mol. Liq., 2019, 290: 111230
doi: 10.1016/j.molliq.2019.111230
19 Tan B C, Zhang S T, Qiang Y J, et al. Experimental and theoretical studies on the inhibition properties of three diphenyl disulfide derivatives on copper corrosion in acid medium [J]. J. Mol. Liq., 2020, 298: 111975
doi: 10.1016/j.molliq.2019.111975
20 Parthipan P, Cheng L, Rajasekar A. Glycyrrhiza glabra extract as an eco-friendly inhibitor for microbiologically influenced corrosion of API 5LX carbon steel in oil well produced water environments [J]. J. Mol. Liq., 2021, 333: 115952
doi: 10.1016/j.molliq.2021.115952
21 Qiang Y J, Zhang S T, Wang L P. Understanding the adsorption and anticorrosive mechanism of DNA inhibitor for copper in sulfuric acid [J]. Appl. Surf. Sci., 2019, 492: 228
doi: 10.1016/j.apsusc.2019.06.190
22 Feng L, Zhang S T, Feng Y Y, et al. Self-aggregate nanoscale copolymer of new synthesized compounds efficiently protecting copper corrosion in sulfuric acid solution [J]. Chem. Eng. J., 2020, 394: 124909
23 Obot I B, Solomon M M, Umoren S A, et al. Progress in the development of sour corrosion inhibitors: past, present, and future perspectives [J]. J. Ind. Eng. Chem., 2019, 79: 1
doi: 10.1016/j.jiec.2019.06.046
24 Tan B C, Zhang S T, Qiang Y J, et al. A combined experimental and theoretical study of the inhibition effect of three disulfide-based flavouring agents for copper corrosion in 0.5 M sulfuric acid [J]. J. Colloid Interface Sci., 2018, 526: 268
doi: 10.1016/j.jcis.2018.04.092
25 Li X H, Deng S D, Fu H, et al. Synergistic inhibition effects of bamboo leaf extract/major components and iodide ion on the corrosion of steel in H3PO4 solution [J]. Corros. Sci., 2014, 78: 29
doi: 10.1016/j.corsci.2013.08.025
26 Zheng X W, Zhang S T, Li W P, et al. Experimental and theoretical studies of two imidazolium-based ionic liquids as inhibitors for mild steel in sulfuric acid solution [J]. Corros. Sci., 2015, 95: 168
doi: 10.1016/j.corsci.2015.03.012
27 Zhang M L, Zhao J M. Research progress of synergistic inhibition effect and mechanism [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 1
27 张漫路, 赵景茂. 缓蚀剂协同效应与协同机理的研究进展 [J]. 中国腐蚀与防护学报, 2016, 36: 1
28 Singh A, Ansari K R, Chauhan D S, et al. Comprehensive investigation of steel corrosion inhibition at macro/micro level by ecofriendly green corrosion inhibitor in 15% HCl medium [J]. J. Colloid Interface Sci., 2020, 560: 225
doi: 10.1016/j.jcis.2019.10.040
29 Lv X H, Zhang Y, Yan Y L, et al. Performance evaluation and adsorption behavior of two new mannich base corrosion inhibitors [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 31
29 吕祥鸿, 张晔, 闫亚丽 等. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 31
30 Zhu H L, Li X F, Lu X M, et al. Intra-/inter-molecular synergistic inhibition effect of sulfonate surfactant and 2-benzothiazolethiol on carbon steel corrosion in 3.5%NaCl solution [J]. Corros. Sci., 2021, 182: 109291
doi: 10.1016/j.corsci.2021.109291
31 Fitoz A, Nazır H, Özgür M, et al. An experimental and theoretical approach towards understanding the inhibitive behavior of a nitrile substituted coumarin compound as an effective acidic media inhibitor [J]. Corros. Sci., 2018, 133: 451
doi: 10.1016/j.corsci.2017.10.004
[1] 张海兵, 张一晗, 马力, 邢少华, 段体岗, 闫永贵. 深浅交变环境牺牲阳极电化学性能研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 867-872.
[2] 赵国仙, 王映超, 张思琦, 宋洋. H2S/CO2对J55钢腐蚀的影响机制[J]. 中国腐蚀与防护学报, 2022, 42(5): 785-790.
[3] 吕迎玺. 高Mo超级奥氏体不锈钢耐Cl-腐蚀性能分析[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
[4] 陈佳起, 侯道林, 肖晗, 高雨薇, 董社英. 酸性介质中桂圆壳碳点对碳钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 629-637.
[5] 王嘉琪, 李莉, 刘婷婷. 工业建筑屋面用铝锰合金的腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(4): 693-698.
[6] 王通, 孟惠民, 葛鹏飞, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 2Cr-1Ni-1.2Mo-0.2V钢在NH4H2PO4溶液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[7] 温佳源, 宋贵宏, 韦小园, 赵鑫, 吴玉胜, 杜昊, 贺春林. Cr含量对Cu合金表面Ni/Ni-Cr/Ni-Cr-Al-Si膜层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 638-646.
[8] 官宇, 刘光明, 张民强, 刘欢欢, 柳志浩, 龚兵兵. Sanicro 25钢在高硫煤灰/模拟烟气中的高温腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 681-686.
[9] 张正阳, 郭子新, 周欣, 孙海静, 孙杰. 纳米埃洛石装载苯并三氮唑自修复涂层研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 705-708.
[10] 陈昊, 樊志彬, 陈志坚, 周学杰, 郑鹏华, 吴军. Cl-与HSO3-对建筑用439不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[11] 徐迪, 杨小佳, 李清, 程学群, 李晓刚. 材料大气环境腐蚀试验方法与评价技术进展[J]. 中国腐蚀与防护学报, 2022, 42(3): 447-457.
[12] 杨欣宇, 杨云天, 卢小鹏, 张涛, 王福会. 镁合金缓蚀剂研究进展[J]. 中国腐蚀与防护学报, 2022, 42(3): 435-440.
[13] 梁泰贺, 朱雪梅, 张振卫, 王新建, 张彦生. 铝硅复合对Fe32Mn7Cr3Al2Si钢氧化改性层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 317-323.
[14] 王淇萱, 吕文生, 杨鹏, 诸利一, 廖文景, 朱远乐. 尾矿库埋入式传感器不锈钢外壳腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[15] 王晶, 王斯琰, 张崇, 王文涛, 曹星, 樊宁, 徐宏妍. 氮掺杂对碳纳米颗粒缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 85-92.