Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (4): 450-460    DOI: 10.11902/1005.4537.2020.125
  研究报告 本期目录 | 过刊浏览 |
O3/SO2复合大气环境中Q235B钢的腐蚀演化特性
陈文娟1,2, 方莲3, 潘刚3,4()
1.合肥工业大学 高性能铜合金材料及成形加工教育部工程研究中心 合肥 230601
2.合肥工业大学材料科学与工程学院博士后流动站 合肥 230009
3.合肥工业大学宣城校区基础部 宣城 242000
4.合肥工业大学 工业安全与应急技术安徽省重点实验室 合肥 230601
Corrosion Evolution Characteristics of Q235B Steel in O3/SO2 Composite Atmosphere
CHEN Wenjuan1,2, FANG Lian3, PAN Gang3,4()
1.Engineering Research Center of High Performance Copper Alloy Materials and Processing, Ministry of Education, Hefei University of Technology, Hefei 230601, China
2.Postdoctoral Research Station, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
3.Foundation Department of Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
4.Anhui Province Key Laboratory of Industry Safety and Emergency Technology, Hefei University of Technology, Hefei 230601, China
全文: PDF(9367 KB)   HTML
摘要: 

采用干/湿交替的实验方法模拟大气腐蚀过程。运用X射线衍射、3D激光测量显微镜、电化学阻抗谱以及极化曲线等手段,研究了O3/SO2复合大气环境中Q235B钢的腐蚀演化特性。结果表明,O3和SO2的交互作用对Q235B钢的腐蚀有明显的抑制作用。腐蚀演化特性方面,当模拟环境中Na2SO3浓度为0.01 mol/L时,O3/SO2复合大气环境中Q235B钢的腐蚀速率呈先迅速增大而后缓慢减小的趋势; 当模拟环境中Na2SO3浓度为0.05 mol/L时,O3/SO2复合大气环境中Q235B钢的腐蚀速率呈先缓慢增大后迅速下降的趋势; 当模拟环境中Na2SO3浓度为0.10 mol/L时,O3/SO2复合大气环境中Q235B钢的腐蚀速率呈先增大而后缓慢减小的趋势。相比于不含O3的大气环境,当模拟大气中SO2含量较低时,O3和SO2的交互作用会促进具有保护性腐蚀产物中α-FeOOH生成;而当大气中SO2含量较高时,O3对腐蚀产物相组成影响不明显。

关键词 Q235B钢O3大气腐蚀腐蚀产物    
Abstract

The corrosion evolution characteristics of Q235B steel in O3/SO2 containing composite atmosphere was examined by means of a simulation of dry/wet cyclic corrosion test, electrochemical impedance spectroscopy (EIS) and polarization curves measurements, as well as X-ray diffractometer (XRD) and 3D laser measurement microscope. The results show that the synergistic effect of O3 and SO2 can obviously inhibit the corrosion of Q235B steel. When the concentration of Na2SO3 in the simulated environment is 0.01 mol/L, the corrosion rate of Q235B steel in the simulated O3/SO2 containing composite atmosphere increases rapidly and then decreases slowly. When the concentration of Na2SO3 in the simulated environment is 0.05 mol/L, the corrosion rate of Q235B steel increases slowly and then decreases rapidly. When the concentration of Na2SO3 in the simulated atmosphere is 0.10 mol/L, the corrosion rate of Q235B steel increases first and then decreases slowly. Compared with the atmosphere without O3, when the content of SO2 in the simulated atmosphere is lower, the synergistic effect of O3 and SO2 will promote the formation of α-FeOOH. When the content of SO2 in the atmosphere is higher, the effect of O3 on the phase composition of the corrosion products is not obvious.

Key wordsQ235B steel    O3    atmospheric corrosion    corrosion product
收稿日期: 2020-07-17     
ZTFLH:  TG172.3  
基金资助:中央高校基本科研业务费专项(PA2020GDSK0078);中央高校基本科研业务费专项(PA2020GDGP0054);合肥工业大学“脱贫攻坚与乡村振兴战略”研究项目(JS2020HGXJ0102)
通讯作者: 潘刚     E-mail: dagang@hfut.edu.cn
Corresponding author: PAN Gang     E-mail: dagang@hfut.edu.cn
作者简介: 陈文娟,女,1986年生,博士,讲师

引用本文:

陈文娟, 方莲, 潘刚. O3/SO2复合大气环境中Q235B钢的腐蚀演化特性[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
Wenjuan CHEN, Lian FANG, Gang PAN. Corrosion Evolution Characteristics of Q235B Steel in O3/SO2 Composite Atmosphere. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 450-460.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.125      或      https://www.jcscp.org/CN/Y2021/V41/I4/450

SampleNa2SO3 / mol·L-1O3 / mg·m-3
#1-10.010
#1-20.0135
#2-10.050
#2-20.0535
#3-10.100
#3-20.1035
表1  模拟大气环境中Na2SO3的浓度和O3的含量
图1  Q235钢模拟大气环境中低碳钢的腐蚀增重曲线
图2  Q235B钢在模拟大气中腐蚀速率随干/湿交替次数变化的曲线
图3  Q235B钢在模拟大气中经过30 CCT后腐蚀产物的XRD谱
图4  大气环境中带锈电极的极化曲线结果
图5  Q235B钢样品在模拟大气中经过不同干/湿交替周次腐蚀后的带锈电极极化电阻曲线
图6  Q235B 钢带锈电极在大气模拟液中的Bode图
图7  拟合模拟大气中带锈电极的电化学阻抗谱的等效电路
图8  Q235B钢带锈电极大气模拟液中EIS拟合结果
图9  Q235B钢在模拟大气中经过2 CCT,10 CCT和30 CCT腐蚀后表面的3D激光显微镜照片
图10  Q235B钢在模拟大气中经过不同时间腐蚀后的表面粗糙度
1 Corvo F, Betancourt N, Mendoza A. The influence of airborne salinity on the atmospheric corrosion of steel [J]. Corros. Sci., 1995, 37: 1889
2 Dong J H, Han E-H, Ke W. Introduction to atmospheric corrosion research in China [J]. Sci. Technol. Adv. Mater., 2007, 8: 559
3 Persson D, Thierry D, Karlsson O. Corrosion and corrosion products of hot dipped galvanized steel during long term atmospheric exposure at different sites world-wide [J]. Corros. Sci., 2017, 126: 152
4 Chen W J, Hao L, Dong J H, et al. Effect of SO2 on corrosion evolution of Q235B steel in simulated coastal-industrial atmosphere [J]. Acta Metall. Sin., 2014, 50: 802
4 陈文娟, 郝龙, 董俊华等. 模拟工业-海岸大气中SO2对Q235B钢腐蚀行为的影响 [J]. 金属学报, 2014, 50: 802
5 Chen W J, Hao L, Dong J H, et al. Effect of sulphur dioxide on the corrosion of a low alloy steel in simulated coastal industrial atmosphere [J]. Corros. Sci., 2014, 83: 155
6 Henriksen J F. The distribution of NaCl on Fe during atmospheric corrosion [J]. Corros. Sci., 1969, 9: 573
7 Graedel T E, Frankenthal R P. Corrosion mechanisms for iron and low alloy steels exposed to the atmosphere [J]. J. Electrochem. Soc., 1990, 137: 2385
8 Songdao Y, translated by Jin Y K. Development and Research of Low Alloy Corrosion Resistant Steel [M]. Beijing: Metallurgical Industry Press, 2004: 235
8 松岛岩著, 靳裕康译. 低合金耐蚀钢—开发、发展及研究 [M]. 北京: 冶金工业出版社, 2004: 235
9 Ishikawa T, Miyamoto S, Kandori K, et al. Influence of anions on the formation of β-FeOOH rusts [J]. Corros. Sci., 2005, 47: 2510
10 Evans U R, Taylor C A J. Mechanism of atmospheric rusting [J]. Corros. Sci., 1972, 12: 227
11 Evans U R. Electrochemical mechanism of atmospheric rusting [J]. Nature, 1965, 206: 980
12 Leygraf C, Graedel T E. Atmospheric Corrosion [M]. New York: Wiley-Interscience, 2000
13 Allam I M, Arlow J S, Saricimen H. Initial stages of atmospheric corrosion of steel in the Arabian Gulf [J]. Corros. Sci., 1991, 32: 417
14 Asami K, Kikuchi M. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years [J]. Corros. Sci., 2003, 45: 2671
15 Wang S T, Yang S W, Gao K W, et al. Corrosion behavior and corrosion products of a low-alloy weathering steel in Qingdao and Wanning [J]. Int. J. Min. Met. Mater., 2009, 16: 58
16 Guo M X, Pan C, Wang Z Y, et al. A study on the initial corrosion behavior of carbon steel exposed to a simulated coastal-industrial atmosphere [J]. Acta. Metall. Sin., 2018, 54: 65
16 郭明晓, 潘晨, 王振尧等. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究 [J]. 金属学报, 2018, 54: 65
17 Ge S J, Wang S J, Xu Q, et al. Ozone impact minimization through coordinated scheduling of turnaround operations from multiple olefin plants in an ozone nonattainment area [J]. Atmos. Environ., 2018, 176: 47
18 Wei W, Lv Z F, Li Y, et al. A WRF-Chem model study of the impact of VOCs emission of a huge petro-chemical industrial zone on the summertime ozone in Beijing, China [J]. Atmos. Environ., 2018, 175: 44
19 Carro-Calvo L, Ordóñez C, García-Herrera R, et al. Spatial clustering and meteorological drivers of summer ozone in Europe [J]. Atmos. Environ., 2017, 167: 496
20 Pendlebury D, Gravel S, Moran M D, et al. Impact of chemical lateral boundary conditions in a regional air quality forecast model on surface ozone predictions during stratospheric intrusions [J]. Atmos. Environ., 2018, 174: 148
21 Jing P, Lu Z F, Steiner A L. The ozone-climate penalty in the Midwestern U.S. [J]. Atmos. Environ., 2017, 170: 130
22 Wiesinger R, Martina I, Kleber C, et al. Influence of relative humidity and ozone on atmospheric silver corrosion [J]. Corros. Sci., 2013, 77: 69
23 Screpanti A, De Marco A. Corrosion on cultural heritage buildings in Italy: a role for ozone? [J]. Environ. Pollut., 2009, 157: 1513
24 Oesch S, Faller M. Environmental effects on materials: The effect of the air pollutants SO2, NO2, NO and O3 on the corrosion of Copper, Zinc and Aluminium. A short literature survey and results of laboratory exposures [J]. Corros. Sci., 1997, 39(9): 1505
25 Chen W J, Chen Y Q, Pan G. Corrosion evolution characteristics of Q235B steel in an O3/Cl- containing atmosphere [J]. Corros. Sci. Prot. Technol., 2019, 31: 8
25 陈文娟, 陈翌庆, 潘刚. O3/Cl-复合大气环境中Q235B钢的腐蚀演化特性 [J]. 腐蚀科学与防护技术, 2019, 31: 8
26 Aastrup T, Wadsak M, Leygraf C, et al. In situ studies of the initial atmospheric corrosion of copper influence of humidity, sulfur dioxide, ozone, and nitrogen dioxide [J]. J. Electrochem. Soc., 2000, 147: 2543
27 Chen W J, Hao L, Dong J H, et al. Effect of pH value on the corrosion evolution of Q235B steel in simulated coastal-industrial atmospheres [J]. Acta Metall. Sin., 2015, 51: 191
27 陈文娟, 郝龙, 董俊华等. 模拟工业-海岸大气中pH值对Q235B钢腐蚀行为的影响 [J]. 金属学报, 2015, 51: 191
28 Kawasaki Y, Tomoda Y, Ohtsu M. AE monitoring of corrosion process in cyclic wet-dry test [J]. Constr. Build. Mater., 2010, 24: 2353
29 Thee C, Hao L, Dong J H, et al. Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet-dry condition [J]. Corros. Sci., 2014, 78: 130
30 Stern M, Geary A L. Electrochemical polarization. I. A theoretical analysis of the shape of polarization curves [J]. J. Electrochem. Soc., 1957, 104: 56
31 Mansfeld F. 1988 Whitney Award Lecture: Don't be afraid of electrochemical techniques-but use them with care! [J]. Corrosion, 1988, 44: 856
32 Mansfeld F, Lin S, Chen Y C, et al. Minimization of high-frequency phase shifts in impedance measurements [J]. J. Electrochem. Soc., 1988, 135: 906
[1] 张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[2] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[3] 王海卫, 常森, 栾新刚, 宋雪梅, 王稹, 李彦樟, 陈建利, 张计荣, 韩明, 丘丹圭. 纳米Al2O3改性SiBCN陶瓷高温粘接剂的制备与性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 367-372.
[4] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[5] 杨寅初,傅秀清,刘琳,马文科,沈莫奇. 喷射电沉积Ni-P-BN(h)-Al2O3复合镀层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[6] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[7] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[8] 陈超,梁艳芬,梁天权,满泉言,罗毅东,张修海,曾建民. 稀土复合掺杂ZrO2陶瓷涂层抗Na2SO4+NaVO3热腐蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
[9] 郭铁明,张延文,秦俊山,宋志涛,董建军,杨新龙,南雪丽. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[10] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[11] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[12] 程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[13] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[14] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[15] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.