Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (5): 765-770    DOI: 10.11902/1005.4537.2022.100
  研究报告 本期目录 | 过刊浏览 |
高Mo超级奥氏体不锈钢耐Cl-腐蚀性能分析
吕迎玺()
山西省机电设计研究院有限公司 太原 030009
Analysis of Cl- Corrosion Resistance of High Mo Super Austenitic Stainless Steels
LV Yingxi()
Shanxi Mechanical and Electrical Design and Research Institute Co. Ltd., Taiyuan 030009, China
全文: PDF(6619 KB)   HTML
摘要: 

对比分析了不同Mo含量的316L、904L、S31254和S31254-B奥氏体不锈钢在10%NaCl溶液中的腐蚀行为,及其固溶处理、低温时效处理对其耐蚀性的影响;利用扫描电子显微镜、电化学极化曲线和电化学阻抗谱对4种不锈钢的显微组织、耐蚀性和表面腐蚀形貌进行了分析。结果表明:4种不锈钢在10%NaCl溶液中有不同的耐蚀性能,耐蚀性排序为:低温时效态>固溶态,S31254-B>S31254>904L>316L。Mo含量的提高、微量合金元素B加入奥氏体、低温时效处理均有利于提升材料的耐蚀性能。B促使表面形成富Cr、Mo氧化物的钝化膜,提升钝化层的致密化,减缓晶界处贫Cr、贫Mo区,提高耐蚀性。

关键词 奥氏体不锈钢耐蚀性电化学腐蚀Mo    
Abstract

The increase of Mo content can improve the corrosion resistance of austenitic stainless steel. In this paper, the corrosion behavior of four austenitic stainless steels 316L, 904L, S31254 and S31254-B with different Mo content in 10%NaCl solution has been comparatively examined. The effect of solution treatment and low temperature aging treatment on the corrosion resistance of steels was compared. The microstructure, corrosion resistance and surface corrosion morphology of the four stainless steels were characterized by means of scanning electron microscope, electrochemical scanning polarization curves and electrochemical impedance spectroscope. The results show that the four stainless steels present different corrosion performance in 10%NaCl solution, their corrosion resistance can be ranked as follows: low temperature aging state>solid solution state for all steels; whilst S31254-B>S31254>904L>316L. The increase of Mo content, the addition of B and the aging treatment at low temperature can improve the corrosion resistance of the steels. Meanwhile, B can promote the formation of Cr- and Mo-rich oxides in the outer layer of passivation film, which makes the surface of passivation film much compact, and the lean-Cr and -Mo regions at grain boundaries can be slowed down, therewith the corrosion resistance of the steels can be improved significantly.

Key wordsAustenitic stainless steel    corrosion resistance    electrochemical corrosion    Mo
收稿日期: 2022-04-09     
ZTFLH:  TF764  
通讯作者: 吕迎玺     E-mail: LYX6746@163.com
Corresponding author: LV Yingxi     E-mail: LYX6746@163.com
作者简介: 吕迎玺,男,1965年生,高级工程师

引用本文:

吕迎玺. 高Mo超级奥氏体不锈钢耐Cl-腐蚀性能分析[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
Yingxi LV. Analysis of Cl- Corrosion Resistance of High Mo Super Austenitic Stainless Steels. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 765-770.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.100      或      https://www.jcscp.org/CN/Y2022/V42/I5/765

SampleCSiMnPSCrNiMoCuNB
S31254-B0.0140.840.980.0120.00120.2318.056.230.850.2420.004
S312540.0120.610.930.0100.00220.1718.156.030.720.212---
904L0.0110.521.290.0180.00120.1024.314.421.420.06---
316L0.0150.541.740.0420.00216.3010.312.45---------
表1  4种不锈钢的化学成分
图1  4种不锈钢1220 ℃固溶处理后显微组织
图2  4种不锈钢固溶并410 ℃低温时效处理后显微组织
图3  S31254-B不锈钢经410 ℃低温时效处理后晶界区域能谱分析
图4  4种不锈钢在10%NaCl溶液中的极化曲线
Heat treatmentIcorr / 107 A·cm-2Ecorr / VSCEEpit / VSCE
Solution-treated of 316L stainless steel1.058-0.3300.431
Aging-treated at 410 ℃ of 316Lstainless steel1.183-0.3200.450
Solution-treated of 904L stainless steel0.833-0.3041.014
Aging-treated at 410 ℃ of 904L stainless steel0.877-0.3191.028
Solution-treated of S31254 stainless steel0.910-0.3001.092
Aging-treated at 410 ℃ of S31254 stainless steel1.024-0.2981.096
Solution-treated of S31254-B stainless steel0.617-0.2121.125
Aging-treated at 410 ℃ of S31254-B stainless steel0.536-0.1111.232
表2  4种不锈钢极化曲线特征值
图5  4种不锈钢在10%NaCl溶液中电化学阻抗谱
图6  4种不锈钢固溶处理后动电位极化后表面形貌
图7  4种不锈钢固溶并410 ℃时效后动电位极化后表面形貌
1 Shoemaker L E, Crum J R. Experience in effective application of metallic materials for construction of FGD systems [R]. Huntington: Special Metals, 2010
2 Herda W, Rockel M, Grossmann G, et al. High specialty stainless steels and nickel alloys for FGD dampers [R]. Houston: NACE International, 1997
3 El-Ghonemy A M K. RETRACTED: Future sustainable water desalination technologies for the Saudi Arabia: A review [J]. Renew. Sust. Energ. Rev., 2012, 16: 6566
doi: 10.1016/j.rser.2012.07.026
4 Cao J R, Zhao P. Selection of engineering material of distillation of seallater with low temperature and multi-effect function [J]. Electr. Power Surv. Des., 2008, (6): 50
4 曹军瑞, 赵鹏. 低温多效海水淡化工程材料的选用 [J]. 电力勘测设计, 2008, (6): 50
5 Olsson J. Stainless steels for desalination plants [J]. Desalination, 2005, 183: 217
doi: 10.1016/j.desal.2005.02.050
6 Tian J J, Li Z G, Qu Z. Analyses and protection of seawater cooling system in offshore oil platform [J]. Corros. Prot., 2007, 28: 476
6 田俊杰, 李振国, 曲政. 某石油平台海水冷却系统腐蚀分析与防护方法 [J]. 腐蚀与防护, 2007, 28: 476
7 Wang C G, Zhao L, Wu L P, et al. Pitting corrosion of several super stainless steels in a simulated water environment of low temperature multi effect desalination unit [J]. Corros. Sci. Prot. Technol., 2018, 30: 339
7 王长罡, 赵林, 伍立坪 等. 几种超级不锈钢在模拟低温多效海水淡化环境中的点蚀行为研究 [J]. 腐蚀科学与防护技术, 2018, 30: 339
8 Li J, Zong Y W, Jin Z H, et al. Corrosion behavior of several metal materials in blast furnace gas condensates [J]. Mater. Prot., 2016, 49(2): 69
8 李嘉, 宗仰炜, 金志浩 等. 几种金属材料在高炉煤气管道冷凝液中的电化学腐蚀行为 [J]. 材料保护, 2016, 49(2): 69
9 de Micheli L, Andrade A H P, Barbosa C A, et al. Electrochemical studies of 254SMO stainless steel in comparison with 316L stainless steel and Hastelloy C276 in phosphoric acid media in absence and presence of chloride ions [J]. Br. Corros. J., 1999, 34: 67
doi: 10.1179/bcj.1999.34.1.67
10 Asahi H. Effects of Mo addition and austenitizing temperature on hardenability of low alloy B-added steels [J]. ISIJ Int., 2002, 42: 1150
doi: 10.2355/isijinternational.42.1150
11 Kurban M, Erb U, Aust K T. A grain boundary characterization study of boron segregation and carbide precipitation in alloy 304 austenitic stainless steel [J]. Scr. Mater., 2006, 54: 1053
doi: 10.1016/j.scriptamat.2005.11.055
12 Bharasi N S, Pujar M G, Nirmal S, et al. Comparison of SCC behavior of 304L stainless steels with and without boron addition in acidic chloride environment [J]. J. Mater. Eng. Perform., 2016, 25: 2786
doi: 10.1007/s11665-016-2130-4
13 Bai G S, Lu S P, Li D Z, et al. Effects of boron on microstructure and metastable pitting corrosion behavior of Super304H austenitic stainless steel [J]. J. Electrochem. Soc., 2015, 162: C473
doi: 10.1149/2.0601509jes
14 Yamamoto S, Kobayashi Y. Effect of Ni and B on the hot workability of high Mo austenitic stainless steels [J]. Iron Steel Inst. Jpn, 1992, 78: 1609
15 Zhang H, Wang D, Xue P, et al. Microstructural evolution and pitting corrosion behavior of friction stir welded joint of high nitrogen stainless steel [J]. Mater. Des., 2016, 110: 802
doi: 10.1016/j.matdes.2016.08.048
16 Hu S, Mao Y Z, Liu X B, et al. Intergranular corrosion behavior of low-chromium ferritic stainless steel without Cr-carbide precipitation after aging [J]. Corros. Sci., 2020, 166: 108420
doi: 10.1016/j.corsci.2019.108420
17 Qurashi M S, Cui Y S, Wang J, et al. Corrosion resistance and passivation behavior of B-containing S31254 stainless steel in a low pH medium [J]. Int. J. Electrochem. Sci., 2019, 14: 10642
18 Zou G B, Shi W, Xiang S, et al. Corrosion behavior of 904L austenitic stainless steel in hydrofluoric acid [J]. RSC Adv., 2018, 8: 2811
doi: 10.1039/C7RA12453H
19 Liu C T, Wu J K. Influence of pH on the passivation behavior of 254SMO stainless steel in 3.5%NaCl solution [J]. Corros. Sci., 2007, 49: 2198
doi: 10.1016/j.corsci.2006.10.032
20 Marcelin S, Pébère N, Régnier S. Electrochemical characterisation of a martensitic stainless steel in a neutral chloride solution [J]. Electrochim. Acta, 2013, 87: 32
doi: 10.1016/j.electacta.2012.09.011
21 Luo H, Dong C F, Xiao K, et al. Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution [J]. Appl. Surf. Sci., 2011, 258: 631
doi: 10.1016/j.apsusc.2011.06.077
22 Luo H, Su H Z, Dong C F, et al. Influence of pH on the passivation behaviour of 904L stainless steel bipolar plates for proton exchange membrane fuel cells [J]. J. Alloy. Compd., 2016, 686: 216
doi: 10.1016/j.jallcom.2016.06.013
23 Zhao K, Li X Q, Wang M T, et al. Corrosion behavior of four corrosion-resistant alloys in ultra-supercritical boiler flue gas condensate [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 493
23 赵康, 李晓琦, 王铭滔 等. 4种耐蚀合金在超超临界锅炉烟气冷凝液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 493
24 Ji K Q, Li G F, Zhao L. Pitting Behavior of two stainless steels in simulated heavy water reactor primary solution and 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 653
24 纪开强, 李光福, 赵亮. 两种不锈钢在模拟重水堆一回路溶液和 3.5%NaCl溶液中的点蚀行为 [J]. 中国腐蚀与防护学报, 2021, 41: 653
25 Bao Y F, Wu Z Y, Chen Z, et al. Effect of sensitization treatment on electrochemical corrosion and pitting corrosion properties of 00Cr21NiMn5Mo2N stainless steel [J]. J. Chin. Soc. Corros. Prot., 2022, in press
25 包晔峰, 武竹雨, 陈哲 等. 敏化处理对00Cr21NiMn5Mo2N节镍型双相不锈钢堆焊层电化学腐蚀与点蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 待出版
26 Wang Y T, Zhao W P, Wei X T, et al. Waste incineration power plant piping chlorine corrosion of high temperature nickel base alloy coating performance study [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 879
26 王永田, 赵祎璠, 魏啸天 等. 垃圾焚烧电站管道镍基合金涂层高温氯腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 879
[1] 刘宇桐, 陈震宇, 朱忠亮, 冯瑞, 包汉生, 张乃强. 2.25Cr1Mo钢及其焊接接头在高温水蒸气中的应力腐蚀开裂敏感性研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 647-654.
[2] 王嘉琪, 李莉, 刘婷婷. 工业建筑屋面用铝锰合金的腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(4): 693-698.
[3] 王通, 孟惠民, 葛鹏飞, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 2Cr-1Ni-1.2Mo-0.2V钢在NH4H2PO4溶液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[4] 赵宝珠, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
[5] 于帅先, 吴亚军, 武海生, 吴量, 麻彦龙, 邓盛卫, 孙立东. 钛酸酯改性硅烷涂层优化及其对5056铝箔耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 378-386.
[6] 伊璞, 侯利锋, 杜华云, 刘笑达, 贾建文, 李阳, 张威, 徐芳泓, 卫英慧. 新型奥氏体不锈钢高温NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 288-294.
[7] 代卫丽, 王景行, 罗帅, 杜宁, 刘凡, 胥立栋, 张俊, 宋月红, 刘彦峰. AM60镁合金超疏水表面制备及防腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 301-308.
[8] 李旭嘉, 惠红海, 赵君文, 巫国强, 戴光泽. 多壁碳纳米管含量对无铬锌铝涂层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 324-330.
[9] 刘永强, 刘光明, 范文学, 甘鸿禹, 唐荣茂, 师超. 聚乙二醇-600对酸性Zn-Ni合金的电沉积行为及镀层耐蚀性影响的研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 235-242.
[10] 柳皓晨, 范林, 张海兵, 王莹莹, 唐鋆磊, 白雪寒, 孙明先. 钛合金深海应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[11] 尹阳阳, 刘建峰, 缪克基, 王婷, 宁锴, 潘卫国, 袁斌霞, 尹诗斌. SO42-对不锈钢在含Cl-溶液中腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
[12] 尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[13] 房豪杰, 曲华, 杨黎晖, 曾庆亚, 王丽丹, 袁宁, 侯保荣, 曹立新, 袁迅道. 9C系列粉末冶金高耐蚀铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[14] 周殿买, 姜磊, 王美婷, 梁洪嘉, 肖云龙, 郑黎, 于宝义. Ce(NO3)2浓度及硅酸盐封孔处理对高铁枕梁用Mg-Zn-Y-Ca合金表面钙系磷化膜的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[15] 刘星, 冉斗, 孟惠民, 李全德, 巩秀芳, 隆彬. 表面状态对TC4钛合金的耐蚀性影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.