|
|
高Mo超级奥氏体不锈钢耐Cl-腐蚀性能分析 |
吕迎玺( ) |
山西省机电设计研究院有限公司 太原 030009 |
|
Analysis of Cl- Corrosion Resistance of High Mo Super Austenitic Stainless Steels |
LV Yingxi( ) |
Shanxi Mechanical and Electrical Design and Research Institute Co. Ltd., Taiyuan 030009, China |
1 |
Shoemaker L E, Crum J R. Experience in effective application of metallic materials for construction of FGD systems [R]. Huntington: Special Metals, 2010
|
2 |
Herda W, Rockel M, Grossmann G, et al. High specialty stainless steels and nickel alloys for FGD dampers [R]. Houston: NACE International, 1997
|
3 |
El-Ghonemy A M K. RETRACTED: Future sustainable water desalination technologies for the Saudi Arabia: A review [J]. Renew. Sust. Energ. Rev., 2012, 16: 6566
doi: 10.1016/j.rser.2012.07.026
|
4 |
Cao J R, Zhao P. Selection of engineering material of distillation of seallater with low temperature and multi-effect function [J]. Electr. Power Surv. Des., 2008, (6): 50
|
4 |
曹军瑞, 赵鹏. 低温多效海水淡化工程材料的选用 [J]. 电力勘测设计, 2008, (6): 50
|
5 |
Olsson J. Stainless steels for desalination plants [J]. Desalination, 2005, 183: 217
doi: 10.1016/j.desal.2005.02.050
|
6 |
Tian J J, Li Z G, Qu Z. Analyses and protection of seawater cooling system in offshore oil platform [J]. Corros. Prot., 2007, 28: 476
|
6 |
田俊杰, 李振国, 曲政. 某石油平台海水冷却系统腐蚀分析与防护方法 [J]. 腐蚀与防护, 2007, 28: 476
|
7 |
Wang C G, Zhao L, Wu L P, et al. Pitting corrosion of several super stainless steels in a simulated water environment of low temperature multi effect desalination unit [J]. Corros. Sci. Prot. Technol., 2018, 30: 339
|
7 |
王长罡, 赵林, 伍立坪 等. 几种超级不锈钢在模拟低温多效海水淡化环境中的点蚀行为研究 [J]. 腐蚀科学与防护技术, 2018, 30: 339
|
8 |
Li J, Zong Y W, Jin Z H, et al. Corrosion behavior of several metal materials in blast furnace gas condensates [J]. Mater. Prot., 2016, 49(2): 69
|
8 |
李嘉, 宗仰炜, 金志浩 等. 几种金属材料在高炉煤气管道冷凝液中的电化学腐蚀行为 [J]. 材料保护, 2016, 49(2): 69
|
9 |
de Micheli L, Andrade A H P, Barbosa C A, et al. Electrochemical studies of 254SMO stainless steel in comparison with 316L stainless steel and Hastelloy C276 in phosphoric acid media in absence and presence of chloride ions [J]. Br. Corros. J., 1999, 34: 67
doi: 10.1179/bcj.1999.34.1.67
|
10 |
Asahi H. Effects of Mo addition and austenitizing temperature on hardenability of low alloy B-added steels [J]. ISIJ Int., 2002, 42: 1150
doi: 10.2355/isijinternational.42.1150
|
11 |
Kurban M, Erb U, Aust K T. A grain boundary characterization study of boron segregation and carbide precipitation in alloy 304 austenitic stainless steel [J]. Scr. Mater., 2006, 54: 1053
doi: 10.1016/j.scriptamat.2005.11.055
|
12 |
Bharasi N S, Pujar M G, Nirmal S, et al. Comparison of SCC behavior of 304L stainless steels with and without boron addition in acidic chloride environment [J]. J. Mater. Eng. Perform., 2016, 25: 2786
doi: 10.1007/s11665-016-2130-4
|
13 |
Bai G S, Lu S P, Li D Z, et al. Effects of boron on microstructure and metastable pitting corrosion behavior of Super304H austenitic stainless steel [J]. J. Electrochem. Soc., 2015, 162: C473
doi: 10.1149/2.0601509jes
|
14 |
Yamamoto S, Kobayashi Y. Effect of Ni and B on the hot workability of high Mo austenitic stainless steels [J]. Iron Steel Inst. Jpn, 1992, 78: 1609
|
15 |
Zhang H, Wang D, Xue P, et al. Microstructural evolution and pitting corrosion behavior of friction stir welded joint of high nitrogen stainless steel [J]. Mater. Des., 2016, 110: 802
doi: 10.1016/j.matdes.2016.08.048
|
16 |
Hu S, Mao Y Z, Liu X B, et al. Intergranular corrosion behavior of low-chromium ferritic stainless steel without Cr-carbide precipitation after aging [J]. Corros. Sci., 2020, 166: 108420
doi: 10.1016/j.corsci.2019.108420
|
17 |
Qurashi M S, Cui Y S, Wang J, et al. Corrosion resistance and passivation behavior of B-containing S31254 stainless steel in a low pH medium [J]. Int. J. Electrochem. Sci., 2019, 14: 10642
|
18 |
Zou G B, Shi W, Xiang S, et al. Corrosion behavior of 904L austenitic stainless steel in hydrofluoric acid [J]. RSC Adv., 2018, 8: 2811
doi: 10.1039/C7RA12453H
|
19 |
Liu C T, Wu J K. Influence of pH on the passivation behavior of 254SMO stainless steel in 3.5%NaCl solution [J]. Corros. Sci., 2007, 49: 2198
doi: 10.1016/j.corsci.2006.10.032
|
20 |
Marcelin S, Pébère N, Régnier S. Electrochemical characterisation of a martensitic stainless steel in a neutral chloride solution [J]. Electrochim. Acta, 2013, 87: 32
doi: 10.1016/j.electacta.2012.09.011
|
21 |
Luo H, Dong C F, Xiao K, et al. Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution [J]. Appl. Surf. Sci., 2011, 258: 631
doi: 10.1016/j.apsusc.2011.06.077
|
22 |
Luo H, Su H Z, Dong C F, et al. Influence of pH on the passivation behaviour of 904L stainless steel bipolar plates for proton exchange membrane fuel cells [J]. J. Alloy. Compd., 2016, 686: 216
doi: 10.1016/j.jallcom.2016.06.013
|
23 |
Zhao K, Li X Q, Wang M T, et al. Corrosion behavior of four corrosion-resistant alloys in ultra-supercritical boiler flue gas condensate [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 493
|
23 |
赵康, 李晓琦, 王铭滔 等. 4种耐蚀合金在超超临界锅炉烟气冷凝液中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 493
|
24 |
Ji K Q, Li G F, Zhao L. Pitting Behavior of two stainless steels in simulated heavy water reactor primary solution and 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 653
|
24 |
纪开强, 李光福, 赵亮. 两种不锈钢在模拟重水堆一回路溶液和 3.5%NaCl溶液中的点蚀行为 [J]. 中国腐蚀与防护学报, 2021, 41: 653
|
25 |
Bao Y F, Wu Z Y, Chen Z, et al. Effect of sensitization treatment on electrochemical corrosion and pitting corrosion properties of 00Cr21NiMn5Mo2N stainless steel [J]. J. Chin. Soc. Corros. Prot., 2022, in press
|
25 |
包晔峰, 武竹雨, 陈哲 等. 敏化处理对00Cr21NiMn5Mo2N节镍型双相不锈钢堆焊层电化学腐蚀与点蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 待出版
|
26 |
Wang Y T, Zhao W P, Wei X T, et al. Waste incineration power plant piping chlorine corrosion of high temperature nickel base alloy coating performance study [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 879
|
26 |
王永田, 赵祎璠, 魏啸天 等. 垃圾焚烧电站管道镍基合金涂层高温氯腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 879
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|