Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (4): 573-582    DOI: 10.11902/1005.4537.2021.151
  研究报告 本期目录 | 过刊浏览 |
Cu/Ag活化对微弧氧化涂层表面化学镀层生长及耐蚀性能的影响
田卫平1, 郭良帅2,3, 王宇航3, 周鹏3, 张涛3()
1.航空工业庆安集团有限公司 西安 710077
2.天津航天长征火箭制造有限公司 天津 300462
3.沈阳材料科学国家研究中心东北大学联合研究分部 沈阳 110819
Effect of Cu-/Ag-activation on Growth and Corrosion Resistance of Electroless Plated Ni-film on Plasma Electrolytic Oxidation Coating
TIAN Weiping1, GUO Liangshuai2,3, WANG Yuhang3, ZHOU Peng3, ZHANG Tao3()
1.Qingan Group Co. Ltd., Xi'an 710077, China
2.Tianjin Aerospace Long March Rocket Manufacturing Co. Ltd., Tianjin 300462, China
3.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
全文: PDF(29868 KB)   HTML
摘要: 

微弧氧化 (PEO) 涂层属于陶瓷性涂层,表面不具有催化活性,需使用金属Pd活化后,再进行化学镀镍。为替代昂贵的Pd活化工艺,分别开发了Cu活化和Ag活化方法。利用场发射扫描电镜对浸镀后Cu/Ag活化复合涂层的镀层表面和截面形貌观察可见,Ag活化后PEO涂层表面镀层更加均匀致密,且厚度更大。经电化学测试表明,Ag活化复合涂层与传统Pd活化复合涂层的耐蚀性能相近,且明显优于Cu活化复合涂层。因此,Ag活化方法在保证复合涂层的耐蚀性能的同时,降低了活化成本。

关键词 AZ91D镁合金Cu/Ag活化微弧氧化化学镀复合涂层    
Abstract

The plasma electrolytic oxidation (PEO) coating is a ceramic-like coating without catalytic activity of its surface, thus which should be activated with noble metal Pd before an electroless nickel (EN) plating process can be conducted. To replace the expensive Pd-activation process, Cu-activation and Ag-activation methods were developed. A field emission-scanning electron microscopy was employed to characterize the surface morphology and cross-section morphology of EN films on the Cu- and Ag-activated PEO coatings. In comparison with the Cu-activated PEO coating, a thicker, compact and more uniform EN layer film was formed on the Ag-activated PEO coating. Moreover, the results of electrochemical tests shown that the EN film plated on Ag-activated coating presents more or less the same corrosion resistance as the EN film plated on Pd-activated PEO coating, and better than the EN film plated on Cu-activated PEO coating. Hence, the Ag-activation method significantly reduce the cost, and best of all, it guaranteed the corrosion resistance of the composite coating.

Key wordsAZ91D Mg alloy    Cu/Ag activation    plasma electrolytic oxidation    electroless plating    composite coating
收稿日期: 2021-06-29     
ZTFLH:  TG172  
基金资助:国家自然科学基金(51771050);国家自然科学基金(51531007);兴辽英才计划(XLYC2002071)
通讯作者: 张涛     E-mail: zhangtao@mail.neu.edu.cn
Corresponding author: ZHANG Tao     E-mail: zhangtao@mail.neu.edu.cn
作者简介: 田卫平,男,1975年生,硕士,工程师

引用本文:

田卫平, 郭良帅, 王宇航, 周鹏, 张涛. Cu/Ag活化对微弧氧化涂层表面化学镀层生长及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 573-582.
Weiping TIAN, Liangshuai GUO, Yuhang WANG, Peng ZHOU, Tao ZHANG. Effect of Cu-/Ag-activation on Growth and Corrosion Resistance of Electroless Plated Ni-film on Plasma Electrolytic Oxidation Coating. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 573-582.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.151      或      https://www.jcscp.org/CN/Y2022/V42/I4/573

图1  PEO涂层的宏观形貌,表面SEM像和截面SEM像
图2  Cu敏化和Cu活化处理后PEO涂层的表面宏观形貌和SEM像
PositionOMgAlSiSCuAg
PEO52.0527.642.8117.50---------
A52.796.660.455.765.0829.26---
B30.3919.802.579.04---38.20---
Cu-activation45.4727.763.4216.65---6.70---
C46.7726.553.3016.39------6.99
D55.7324.341.918.53------9.50
Ag-activation52.4129.123.1213.63------1.72
表1  EDS分析结果
图3  经Cu活化处理后PEO涂层表面主要元素分布图
图4  Ag敏化和Ag活化处理后PEO涂层的表面宏观形貌和SEM像
图5  Ag活化处理后PEO涂层表面主要元素分布图
图6  PEO涂层及不同活化处理后PEO涂层的XRD图谱
图7  经过不同敏化/活化处理后,PEO涂层的XPS图谱
图8  Cu/Ag/Pd活化处理后浸镀3、10和30 min后镀层表面和浸镀30 min后镀层截面的SEM像
图9  PEO-Cu-EN、PEO-Ag-EN和PEO-Pd-EN复合涂层的XRD图谱
图10  镁合金及不同涂层的动电位极化测试曲线
SampleIcorr / μA·cm-2Ecorr / mVSCE
AZ91D11.52±0.29-1578±29
PEO-Cu-EN8.06±0.30-506±20
PEO-Ag-EN5.12±0.50-453±21
PEO-Pd-EN4.92±0.50-414±20
表2  图10中动电位极化曲线的拟合结果
图11  镁合金及不同涂层的电化学阻抗谱
图12  拟合电化学阻抗谱的等效电路
SampleCPEf / Ω-1·cm-2·s nnfRf / Ω cm2CPEdl / Ω-1·cm-2·s nn2Rct / Ω·cm2RL / Ω·cm2L / H·cm-2
AZ91D1.20×10-50.94451.74.15×10-40.42802.50392.861.98
PEO-Cu-EN9.27×10-818.6653.83×10-50.902.85×104------
PEO-Ag-EN5.08×10-50.961.50×1048.26×10-50.903.37×104------
PEO-Pd-EN7.41×10-40.941.04×1043.39×10-50.943.66×104------
表3  电化学阻抗谱的拟合结果
图13  两种涂层在中性盐雾过程中的宏观形貌
1 Zhang T, Li Y, Wang F. Roles of β phase in the corrosion process of AZ91D magnesium alloy [J]. Corros. Sci., 2006, 48: 1249
doi: 10.1016/j.corsci.2005.05.011
2 Zhang T, Liu X L, Shao Y W, et al. Electrochemical noise analysis on the pit corrosion susceptibility of Mg-10Gd-2Y-0.5Zr, AZ91D alloy and pure magnesium using stochastic model [J]. Corros. Sci., 2008, 50: 3500
doi: 10.1016/j.corsci.2008.09.033
3 Meng G Z, Shao Y W, Zhang T, et al. Synthesis and corrosion property of pure Ni with a high density of nanoscale twins [J]. Electrochim. Acta, 2008, 53: 5923
doi: 10.1016/j.electacta.2008.03.070
4 Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
doi: 10.1126/science.1092905
5 Zeng R C, Zhang J, Huang W J, et al. Review of studies on corrosion of magnesium alloys [J]. Trans. Nonferrous Met. Soc. China, 2006, 16: S763
doi: 10.1016/S1003-6326(06)60297-5
6 Thomas S, Medhekar N V, Frankel G S, et al. Corrosion mechanism and hydrogen evolution on Mg [J]. Curr. Opin. Solid State Mater. Sci., 2015, 19: 85
doi: 10.1016/j.cossms.2014.09.005
7 Singh C, Meena L K, Tiwari S K, et al. Establishing environment friendly surface treatment for AZ91 magnesium alloy for subsequent electroless nickel plating [J]. J. Electrochem. Soc., 2018, 165: C71
doi: 10.1149/2.1091802jes
8 Song Y W, Shan D Y, Han E-H. High corrosion resistance of electroless composite plating coatings on AZ91D magnesium alloys [J]. Electrochim. Acta, 2008, 53: 2135
doi: 10.1016/j.electacta.2007.09.026
9 Cheng I C, Fu E G, Liu L D, et al. Effect of fluorine anions on anodizing behavior of AZ91 magnesium alloy in alkaline solutions [J]. J. Electrochem. Soc., 2008, 155: C219
doi: 10.1149/1.2883739
10 Mathieu S, Rapin C, Hazan J, et al. Corrosion behaviour of high pressure die-cast and semi-solid cast AZ91D alloys [J]. Corros. Sci., 2002, 44: 2737
doi: 10.1016/S0010-938X(02)00075-6
11 Xie Z H, Li D, Skeete Z, et al. Nanocontainer-enhanced self-healing for corrosion-resistant Ni coating on Mg alloy [J]. ACS Appl. Mater. Interfaces, 2017, 9: 36247
doi: 10.1021/acsami.7b12036
12 Tulsi S S. Properties of electroless nickel [J]. Trans. IMF, 1986, 64: 73
doi: 10.1080/00202967.1986.11870738
13 Song Z W, Xie Z H, Yu G, et al. A novel palladium-free surface activation process for electroless nickel deposition on micro-arc oxidation film of AZ91D Mg alloy [J]. J. Alloy. Compd., 2015, 623: 274
doi: 10.1016/j.jallcom.2014.10.130
14 Sun S, Liu J G, Yan C W, et al. A novel process for electroless nickel plating on anodized magnesium alloy [J]. Appl. Surf. Sci., 2008, 254: 5016
doi: 10.1016/j.apsusc.2008.01.169
15 Zeng L Y, Yang S W, Zhang W, et al. Preparation and characterization of a double-layer coating on magnesium alloy AZ91D [J]. Electrochim. Acta, 2010, 55: 3376
doi: 10.1016/j.electacta.2010.01.041
16 Malayoglu U, Tekin K C, Shrestha S. Influence of post-treatment on the corrosion resistance of PEO coated AM50B and AM60B Mg alloys [J]. Surf. Coat. Technol., 2010, 205: 1793
doi: 10.1016/j.surfcoat.2010.08.022
17 McCafferty E. Validation of corrosion rates measured by the tafel extrapolation method [J]. Corros. Sci., 2005, 47: 3202
doi: 10.1016/j.corsci.2005.05.046
18 Li Z J, Jing X Y, Yuan Y, et al. Composite coatings on a Mg-Li alloy prepared by combined plasma electrolytic oxidation and sol-gel techniques [J]. Corros. Sci., 2012, 63: 358
doi: 10.1016/j.corsci.2012.06.018
19 Zhang X M, Wu G S, Peng X, et al. Mitigation of corrosion on magnesium alloy by predesigned surface corrosion [J]. Sci. Rep., 2015, 5: 17399
doi: 10.1038/srep17399
20 Song G L, Shi Z M. Corrosion mechanism and evaluation of anodized magnesium alloys [J]. Corros. Sci., 2014, 85: 126
doi: 10.1016/j.corsci.2014.04.008
[1] 刘珺, 耿永娟, 李绍纯, 徐爱玲, 侯东帅, 刘昂, 郎秀璐, 陈旭, 刘国锋. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[2] 陈振宁, 雍兴跃, 陈晓春. 镁合金微弧氧化膜中微缺陷问题研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 1-8.
[3] 李建永, 代殿宇, 钱程, 刁书磊, 刘金山, 路通鑫, 孙勇, 肖凤娟. 不锈钢表面聚苯胺纳米纤维/改性氧化石墨烯/水性环氧复合涂层的制备与防护性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 156-162.
[4] 杨胜, 张慧杰, 向午渊, 欧阳涛, 肖芬, 周慧. 表面处理工艺对TC4钛合金微弧氧化膜层及电偶电流的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[5] 安亮, 高昌琦, 贾建刚, 马勤. 金属硅化物抗氧化涂层的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 298-306.
[6] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[7] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[8] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[9] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[10] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[11] 郝利新, 贾瑞灵, 张慧霞, 张伟, 赵婷, 翟熙伟. 7A52铝合金双丝MIG焊接头的不均匀性对其表面微弧氧化膜腐蚀防护作用的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 219-225.
[12] 杨钊, 时惠英, 蒋百灵, 葛延峰, 张静, 张曼玉, 李研. 脉冲电流对1050铝合金微弧氧化过程的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 283-288.
[13] 付颖, 张艳, 包星宇, 张伟, 王福会, 辛丽. 钛合金表面耐磨涂层研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 117-123.
[14] 崔学军, 平静. 微弧氧化及其在镁合金腐蚀防护领域的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 87-104.
[15] 冯立, 张立功, 李思振, 郑大江, 林昌健, 董士刚. 柠檬酸铁浓度对镁合金微弧氧化黑色膜层微观结构及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(4): 360-365.