Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (4): 583-589    DOI: 10.11902/1005.4537.2021.234
  研究报告 本期目录 | 过刊浏览 |
基于深度学习方法的N5/NiCrAlY涂层图像识别的研究
王明好1, 王欢2, 刘叡1, 孟凡帝1, 刘莉1(), 王福会1
1.东北大学 沈阳材料科学国家研究中心 沈阳 110819
2.东北大学信息科学与工程学院 沈阳 110169
Research on Image Recognition for NiCrAlY Coating/N5 High-temperature Alloy System Based on Deep Learning Method
WANG Minghao1, WANG Huan2, LIU Rui1, MENG Fandi1, LIU Li1(), WANG Fuhui1
1.Shenyang National Laboratory for Materials Science, Northeasten University, Shenyang 110819, China
2.College of Information Science and Engineering, Northeastern University, Shenyang 110169, China
全文: PDF(4543 KB)   HTML
摘要: 

利用深度学习方法,将图像处理技术运用于NiCrAlY涂层/Ni基高温合金服役过程中微观形貌的图像特征信息识别和检索。以NiCrAlY涂层/N5合金为研究对象,基于获取的3600张64×64像素的截面特征图像数据集,采用深度学习技术搭建对基体的TCP相、基体与涂层的界面、氧化层这三类特征进行分类识别。分别训练有二、三层卷积层的卷积神经网络实现这三类特征的分类识别与滑动窗口检索定位。选用RMSProp优化器,配合二、三层卷积层的神经网络的测试集识别准确率分别为98%、90.67%。利用Adam优化器训练三层卷积层的卷积神经网络的测试集识别准确率为99.17%,并且此网络在检索1024×943像素图像的三大特征时表现最佳,检索正确率达到100%。

关键词 N5/NiCrAlY卷积神经网络图像识别高温氧化腐蚀    
Abstract

The evolution of micro-morphology for the couple of NiCrAlY coating/N5 high-temperature alloy system during service at high temperature, namely the precipitated TCP-phases within the substrate, the interface of coating/substrate, and the formed oxide scale etc., was studied by means of image processing technology, aiming to acquire the information related with their characteristics for the identification and retrieval of the relevant features of coating/alloy systems. Based on the acquired date-sets from 3600 frames of cross-sectional feature images of 64×64 pixels, a convolutional neural network (CNN) was established for classification and identification of the TCP phase, the interface of coating/substrate, and the oxide scale via a deep learning technique. The convolutional neural networks with two or three convolutional layers were respectively trained, so that the classification and identification of these three kinds of features, as well as the sliding window retrieval positioning are realized, thereby, the test set accuracy was 98% or 90.67%, respectively, for the neural network of two or three convolution layers coupled with the RMSProp optimizer. The test set accuracy for the convolutional neural network with three convolutional layers coupled with the Adam optimizer was 99.17%. This network performs best in retrieving the desired three features for images of 1024×943 pixel, correspondingly, the retrieval accuracy even can reach 100%.

Key wordsN5/NiCrAlY    convolutional neural networks    image recognition    high temperature corrosion
收稿日期: 2021-09-05     
ZTFLH:  TG172  
基金资助:国家重点研发计划(2017YFB0702303)
通讯作者: 刘莉     E-mail: liuli@mail.neu.edu.cn
Corresponding author: LIU Li     E-mail: liuli@mail.neu.edu.cn
作者简介: 王明好,女,1995年生,硕士生

引用本文:

王明好, 王欢, 刘叡, 孟凡帝, 刘莉, 王福会. 基于深度学习方法的N5/NiCrAlY涂层图像识别的研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 583-589.
Minghao WANG, Huan WANG, Rui LIU, Fandi MENG, Li LIU, Fuhui WANG. Research on Image Recognition for NiCrAlY Coating/N5 High-temperature Alloy System Based on Deep Learning Method. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 583-589.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.234      或      https://www.jcscp.org/CN/Y2022/V42/I4/583

图1  经过第一个卷积层得到的针状相特征图
图2  经过第一个池化层得到的针状相池化图
LayerConnection typeOutput shapeParam
Input layer(64, 64, 3)64×64×3
Conv layer_1ReLU(62, 62, 32)(3×3, 32)
Pooling layer_1(31, 31, 32)

MaxPooling,

stride=2

Conv layer_2ReLU(29, 29, 64)(3×3, 32)
Pooling layer_2(14, 14, 64)

MaxPooling,

stride=2

Conv layer_3ReLU(12, 12, 64)(3×3, 64)
Pooling layer_3(6, 6, 64)

MaxPooling,

stride=2

Full connected layer2304Full
Output layer3SoftMax
表1  网络的结构参数
图3  卷积神经网络数据集中部分图像展示
图4  Image Data Generator图像处理器处理效果图
图5  多弧离子镀NiCrAlY涂层的微观形貌
NumberConv numberOptimizerTest Accuracy
12RMSProp0.9800
23RMSProp0.9067
34RMSProp0.9917
43Adam0.9917
54Adam0.9833
表2  模型参数设置与准确率
图6  8层卷积神经网络 (Adam) 对不同氧化条件下界面的识别结果
图7  各卷积神经网络的正确率和损失率变化曲线图
1 Yang Z Z, Kuang N, Fan L, et al. Review of image classification algorithms based on convolutional neural networks [J]. J. Sign. Process., 2018, 34: 1474
1 杨真真, 匡楠, 范露 等. 基于卷积神经网络的图像分类算法综述 [J]. 信号处理, 2018, 34: 1474
2 Wang D K. Weld defect classification and recognition of the in-service pipeline based on BP neural network [J]. Comput. Tomogr. Theory Appl., 2012, 21: 43
2 王道阔. 基于BP神经网络的在役管线焊缝故障缺陷的分类识别 [J]. CT理论与应用研究, 2012, 21: 43
3 Zou L Y, Wu S Q, Fang H P, et al. Survey on material perception based on computer vision [J]. Appl. Res. Comput., 2019, 36: 2894
3 邹凌云, 伍世虔, 方红萍 等. 基于计算机视觉的材料感知技术综述 [J]. 计算机应用研究, 2019, 36: 2894
4 Yu C T, Yang Y F, Bao Z B, et al. Research progress in preparation and development of excellent bond coats for advanced thermal barrier coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 395
4 余春堂, 阳颖飞, 鲍泽斌 等. 先进高温热障涂层用高性能粘接层制备及研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 395
5 Wang X Y, Xin L, Wei H, et al. Progress of high-temperature protective coatings [J]. Corros. Sci. Prot. Technol., 2013, 25: 175
5 王心悦, 辛丽, 韦华 等. 高温防护涂层研究进展 [J]. 腐蚀科学与防护技术, 2013, 25: 175
6 Beele W, Czech N, Quadakkers W J, et al. Long-term oxidation tests on a re-containing MCrAlY coating [J]. Surf. Coat. Technol., 1997, 94/95: 41
7 Goward G W. Progress in coatings for gas turbine airfoils [J]. Surf. Coat. Technol., 1998, 108: 73
8 Jiang B C, Cao J D, Cao X Y, et al. Hot corrosion behavior of Gd2(Zr1- x Ce x )2O7 thermal barrier coating ceramics exposed to artificial particulates of CMAS [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 263
8 姜伯晨, 曹将栋, 曹雪玉 等. Gd2(Zr1- x Ce x )2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 263
9 Wen M, Jordan E H, Gell M. Remaining life prediction of thermal barrier coatings based on photoluminescence piezospectroscopy measurements [J]. J. Eng. Gas Turb. Power, 2005, 128: 610
doi: 10.1115/1.2135820
10 Huang Q Y, Li H K. High Temperature Alloys [M]. Beijing: Metallurgical Industry Press, 2000
10 黄乾尧, 李汉康. 高温合金 [M]. 北京: 冶金工业出版社, 2000
11 Wang B, Gong J, Wang A Y, et al. Oxidation behaviour of NiCrAlY coatings on Ni-based superalloy [J]. Surf. Coat. Technol., 2002, 149: 70
doi: 10.1016/S0257-8972(01)01427-X
12 Li W Z, Li Y Q, Yi D Q, et al. Microstructural evolution and failure mechanism of NiCrAlY coating systems during different cycled oxidation [J]. Chin. J. Nonferrrous Met., 2013, 23: 417
12 李伟洲, 李月巧, 易丹青 等. 不同冷热循环条件下NiCrAlY涂层体系的微观组织演变规律及失效机理 [J]. 中国有色金属学报, 2013, 23: 417
13 Chen Y, Zhao X F, Xiao P. Effect of microstructure on early oxidation of MCrAlY coatings [J]. Acta Mater., 2018, 159: 150
doi: 10.1016/j.actamat.2018.08.018
14 Chen W R, Wu R, Marple B R, et al. TGO growth behaviour in TBCs with APS and HVOF bond coats [J]. Surf. Coat. Technol., 2008, 202: 2677
doi: 10.1016/j.surfcoat.2007.09.042
15 Huang X W, Jiang X H, Li C C, et al. Research progress of coating life prediction and reliability evaluation [J]. Mater. Prot., 2018, 51(7): 110
15 黄烯望, 姜新华, 李长春 等. 涂层寿命预测与可靠性评价的研究进展 [J]. 材料保护, 2018, 51(7): 110
16 Chen H J, Li Q L, Cheng X D, et al. Influence of thermally grown oxide on failure of thermal barrier coating [J]. Mater. Prot., 2012, 45(3): 5
16 陈慧君, 李其连, 程旭东 等. TGO对热障涂层失效的作用分析 [J]. 材料保护, 2012, 45(3): 5
[1] 赵海洋, 高多龙, 张童, 吕由, 张宇鹏, 张欣欣, 石鑫, 魏晓静, 刘冬梅, 董泽华. 电弧增材制造航空AA2024铝合金的微观结构及其腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 621-628.
[2] 刘玲, 邵紫雅, 贾天越, 刘国强, 雷冰, 孟国哲. 埃洛石纳米管负载改性及其在智能防腐涂层中的应用研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 523-530.
[3] 范益, 杨文秀, 王军, 蔡佳兴, 马宏驰. Q690qE桥梁钢在模拟滨海工业环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 669-674.
[4] 田卫平, 郭良帅, 王宇航, 周鹏, 张涛. Cu/Ag活化对微弧氧化涂层表面化学镀层生长及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 573-582.
[5] 高智悦 姜波 樊志彬 王晓明 李辛庚 张振岳. 典型接地材料在碱性土壤模拟液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[6] 邓志华 雷然 张智勇 杨维宇 李向红. 香根草提取物对盐酸环境中钢的缓蚀作用[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[7] 杨依凡 孙文瑶 陈明辉 王金龙 王福会. 镍基单晶高温合金René N5及其纳米晶涂层在900 ℃ O2和O2 + 20% H2O中的氧化行为研究[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[8] 李晗 刘元海 赵连红 崔中雨. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[9] 张佳欢 崔中雨 范林 孙明先. 热处理工艺对Ti6321合金腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[10] 王永欣, 汪艺璇, 陈春林, 李祥, 贺南开, 李金龙. 具有“层中层”结构的Zr/[Al(Si)N/CrN]涂层制备及其在海水环境中腐蚀磨损特性[J]. 中国腐蚀与防护学报, 2022, 42(3): 345-357.
[11] 张克乾, 张华, 李扬, 洪业, 贺诚. 焦耳陶瓷电熔炉中电极材料腐蚀问题的研究现状[J]. 中国腐蚀与防护学报, 2022, 42(3): 458-463.
[12] 崔中雨, 葛峰, 王昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[13] 刘毅超, 钟显康, 扈俊颖. 湿气环境中抗硫钢的元素硫腐蚀特征及腐蚀机理[J]. 中国腐蚀与防护学报, 2022, 42(3): 369-377.
[14] 程玉贤, 曹超, 蒋成洋, 陈明辉, 王福会. 模拟高温海洋环境中铝化物/搪瓷复合涂层腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 410-416.
[15] 陈昊, 樊志彬, 陈志坚, 周学杰, 郑鹏华, 吴军. Cl-与HSO3-对建筑用439不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.