Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (3): 298-306    DOI: 10.11902/1005.4537.2020.076
  综合评述 本期目录 | 过刊浏览 |
金属硅化物抗氧化涂层的研究进展
安亮1(), 高昌琦2, 贾建刚2, 马勤2
1.兰州城市学院 培黎机械工程学院 兰州 730070
2.兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050
Review on Metal Silicide Anti-oxidation Coatings
AN Liang1(), GAO Changqi2, JIA Jiangang2, MA Qin2
1.School of Bailie Mechanical Engineering, Lanzhou City University, Lanzhou 730070, China
2.State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
全文: PDF(5352 KB)   HTML
摘要: 

针对化工领域,阐述了Si-Fe涂层的制备工艺现状,并对其抗氧化机制及工业化应用发展进行了说明;对于高温防护领域,重点综述了Si-Mo、Si-Zr两种高温防护涂层的研究现状,并介绍了不同元素对涂层抗氧化性能的合金化改善效果及其抗氧化机制。相对于单层涂层,双层或多层复合硅化物涂层具有极佳的可设计性,并能够兼顾耐热性能与结合强度的要求,避免涂层与基体间热膨胀失配、元素扩散等缺陷的产生,举例说明了其设计理念及性能优势。展望了难熔金属硅化物涂层的发展方向,为其工程应用提供理论支持。

关键词 硅化物抗氧化性能合金化复合涂层    
Abstract

For chemical industry, the preparation technologies, the anti-oxidation mechanisms and the status of industrial applications of Si-Fe coatings are introduced. The research status of Si-Mo and Si-Zr coatings for the application of high temperature protection are overviewed particularly, simultaneously,the effect of various alloying elements on the anti-oxidation of silicide coatings and the relevant mechanisms are described. Compared to single-layer silicide coatings, bilayer or multi-layer composite coatings with excellent designability can meet simultaneously the requirements both of heat resistance of coatings and the adhesive strength between coatings and substrates, besides, which also can minimize defects such as the thermal expansion mismatch and elemental inter-diffusion between the coating and the substrate. Therefore, of which the performance advantages and structural design concept are illustrated. Lastly, the development trend of refractory metal silicide coatings is prospected so that to provide the proper reference for engineering application.

Key wordsmetal silicide    anti-oxidation property    alloying    composite coating
收稿日期: 2020-05-06     
ZTFLH:  TG174.4  
基金资助:国家自然科学基金(51565024);兰州城市学院博士科研基金(LZCU-BS2018-22)
通讯作者: 安亮     E-mail: anliang72@163.com
Corresponding author: AN Liang     E-mail: anliang72@163.com

引用本文:

安亮, 高昌琦, 贾建刚, 马勤. 金属硅化物抗氧化涂层的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 298-306.
Liang AN, Changqi GAO, Jiangang JIA, Qin MA. Review on Metal Silicide Anti-oxidation Coatings. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 298-306.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.076      或      https://www.jcscp.org/CN/Y2021/V41/I3/298

图1  渗硅层的形成机理[17]
图2  Fe3Si渗层900 ℃氧化100 h后氧化膜截面SEM像及元素线分布[25]
图3  不同温度下Si-Mo与Si-Mo-Al涂层氧化质量变化[32]
图4  1250 ℃不同氧化时间下Mo-Si-Al涂层截面BSE形貌[35]
图5  Mo-Si-B涂层及1250 ℃氧化100 h后截面形貌[40]
图6  AIP-溅射复合镀膜系统原理图[47]
图7  1300 ℃空气中退火Zr-Si-N涂层的热重曲线[55]
1 Committee on Coatings, National Material Advisory Board, Translated by Jin S. High Temperature Oxidation Resistant Coatings [M]. Beijing: Science China Press, 1980: 9
1 Committee on Coatings, National Material Advisory Board著, 金石译. 高温抗氧化涂层 [M]. 北京: 科学出版社, 1980: 9
2 Kolometsev Π Τ, Translated by Ma Z C. Heat Resistant Diffusion Coating [M]. Beijing: National Defense Industry Press, 1988: 119
2 Kolometsev Π Τ著, 马志春译. 耐热扩散涂层 [M]. 北京: 国防工业出版社, 1988: 119
3 Liu F L, Li J G, Luo G X. The features and main progress of modern aeronautical surface protective technology [J]. Aviat. Eng. Maint., 1999, (5): 37
3 刘凤岭, 李金桂, 骆更新. 现代航空表面防护技术的特点及其主要进展 [J]. 航空工程与维修, 1999, (5): 37
4 Yi D Q, Liu H Q, Wang B. Metal Silicide [M]. Beijing: Metallurgical Industry Press, 2012: 378
4 易丹青, 刘会群, 王斌. 金属硅化物 [M]. 北京: 冶金工业出版社, 2012: 378
5 Galyshev S, Gomzin A, Musin F. Aluminum matrix composite reinforced by carbon fibers [J]. MaterialsToday Proc., 2019, 11: 281
6 Shirvanimoghaddam K, Hamim S U, Akbari M K, et al. Carbon fiber reinforced metal matrix composites: Fabrication processes and properties [J]. Composites, 2017, 92A: 70
7 Wei Y, Chen J L, Hu C Y, et al. Research development of precious metals for ultra-high temperature applications [J]. Prec. Met., 2013, 34(): 122
7 魏燕, 陈家林, 胡昌义等. 贵金属高温材料的研究及应用进展 [J]. 贵金属, 2013, 34(): 122
8 Zhang G Y, Zhang H, Zhang H A, et al. Progress in preparation and application of corrosive resistance coating for aerospace superalloys [J]. Mater. Rev., 2006, 20(5): 59
8 张光业, 张华, 张厚安等. 航空用高温合金防护涂层的研制及其应用的新进展 [J]. 材料导报, 2006, 20(5): 59
9 Hua A, Pan D S, Li Y, et al. Fe3Si-core/amorphous-C-shell nanocapsules with enhanced microwave absorption [J]. J. Magn. Magn. Mater., 2019, 471: 561
10 Zhang M, Li Z J, Wang T, et al. Preparation and electromagnetic wave absorption performance of Fe3Si/SiC@SiO2 nanocomposites [J]. Chem. Eng. J., 2019, 362: 619
11 Zhou Q, Jia J G, Zhao H S, et al. Oxidation resistance at high temperature of Fe3Si intermetallic [J]. J. Aeronaut. Mater., 2011, 31(2): 72
11 周琦, 贾建刚, 赵红顺等. Fe3Si金属间化合物高温抗氧化性能研究 [J]. 航空材料学报, 2011, 31(2): 72
12 Jia J G, Lv J J, Ma Q. Tribological properties of Fe3 Si under dry friction and water lubrication [J]. Tribology, 2008, 28: 299
12 贾建刚, 吕晋军, 马勤. Fe3Si金属间化合物在干摩擦及水润滑条件下的摩擦学性能研究 [J]. 摩擦学学报, 2008, 28: 299
13 Murakami T, Hibi Y, Mano H, et al. Friction and wear properties of Fe-Si intermetallic compounds in ethyl alcohol [J]. Intermetallics, 2012, 20: 68
14 Ma Q C, Li C S, Wu S Q, et al. Study on the wear-resisting character of porous siliconizing coatings on carbon steel [J]. J. East China Univ. Sci. Technol., 1992, 18: 323
14 麻启承, 李春树, 吴圣清等. 碳钢多孔渗硅层耐磨性的研究 [J]. 华东化工学院学报, 1992, 18: 323
15 Ma L P, Ma Y X, Ma Q C. Study on the pore formation in the siliconized layer of carbon steel [J]. Shanghai Met., 1999, 21(2): 54
15 麻莉萍, 麻云新, 麻启承. 碳钢渗硅层组织中孔隙的形成原因研究 [J]. 上海金属, 1999, 21(2): 54
16 Wang J L, Luo X M, Chen K M, et al. Study on fine structure of pack cementation siliconizing layer on surface of Cr18Ni9 austenitic stainless steel [J]. Hot Work. Technol., 2008, 37(2): 57
16 王金兰, 罗新民, 陈康敏等. Cr18Ni9奥氏体不锈钢表面粉末渗硅层精细结构研究 [J]. 热加工工艺, 2008, 37(2): 57
17 Wang J L. Research on siliconized layer and high temperature corrosion capability of austenitic stainless steel [D]. Zhenjiang: Jiangsu University, 2008
17 王金兰. 奥氏体不锈钢渗硅及其抗高温腐蚀性能应用研究 [D]. 镇江: 江苏大学, 2008
18 An L. Preparation and characterization of Fe3Si based transition-metal silicide layer and nanocomposite powders [D]. Lanzhou: Lanzhou University of Technology, 2011
18 安亮. Fe3Si基过渡金属硅化物渗层及纳米复合粉体的制备与表征 [D]. 兰州: 兰州理工大学, 2011
19 Cai H. Microstructure and high temperature oxidation resistance properties of packing Al and Al-Si cementation on TA15 alloy [D]. Harbin: Harbin Institute of Technology, 2017
19 蔡槐. 钛合金包埋渗铝及硅铝共渗层组织结构与高温抗氧化性能 [D]. 哈尔滨: 哈尔滨工业大学, 2017
20 Tatemoto K, Ono Y, Suzuki R O. Silicide coating on refractory metals in molten salt [J]. J. Phys. Chem. Solids, 2005, 66: 526
21 An L, Ma Q, Jia J G, et al. Preparation of Fe3Si type transition-metal silicide layer deposited on AISI 304 stainless and its mechanical property [J]. Hot Work. Technol., 2011, 40(22): 134
21 安亮, 马勤, 贾建刚等. AISI 304不锈钢表面Fe3Si型硅化物渗层制备及其力学性能 [J]. 热加工工艺, 2011, 40(22): 134
22 An L, Jia J G, You S J, et al. Microstructure and properties of silicide layer deposited on 0Cr18Ni9 stainless steel by siliconizing in molten salt [J]. Trans. Mater. Heat Treat., 2011, 32(3): 144
22 安亮, 贾建刚, 尤少君等. 0Cr18Ni9钢表面熔盐法渗硅层的组织与性能 [J]. 材料热处理学报, 2011, 32(3): 144
23 An L, Jia J G, Ma Q, et al. Preparation and siliconizing mechanism of Fe3Si type silicide layer deposited on AISI 304 stainless steel [J]. Chin. J. Nonferrous Met., 2011, 21: 3064
23 安亮, 贾建刚, 马勤等. AISI 304不锈钢表面Fe3Si型硅化物渗层的制备及渗硅机理 [J]. 中国有色金属学报, 2011, 21: 3064
24 An L, Jia J G, Ma Q, et al. Preparation of silicide layer on AISI 304 stainless steel and oxidation resistance [J]. Trans. Mater. Heat Treat., 2011, 32(7): 151
24 安亮, 贾建刚, 马勤等. AISI 304不锈钢表面硅化物渗层的制备与抗氧化性能 [J]. 材料热处理学报, 2011, 32(7): 151
25 An L, Ma Q, Jia J G, et al. Preparation of silicide layer deposited on AISI 304 surface and its cyclic oxidation behavior at 900 ℃ [J]. Hot Work. Technol., 2011, 40(20): 137
25 安亮, 马勤, 贾建刚等. AISI 304表面硅化物渗层的制备及其900 ℃循环氧化性能研究 [J]. 热加工工艺, 2011, 40(20): 137
26 Zhou Q, Zhang X M, Jia J G, et al. Effects of Al on the oxidation behavior of Fe3Si based ordered alloys at 800 ℃ [J]. J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.), 2011, 39(3): 10
26 周琦, 章新民, 贾建刚等. Al对Fe3Si基有序合金800 ℃氧化行为的影响 [J]. 华中科技大学学报(自然科学版), 2011, 39(3): 10
27 Ma R, Xie Q, Huang J. Influence of alloying effects on structural stability and elastic properties of Fe3Si [J]. Rare Met. Mater. Eng., 2014, 43: 665
27 马瑞, 谢泉, 黄晋. 合金化效应对Fe3Si结构稳定性和力学性能的影响 [J]. 稀有金属材料与工程, 2014, 43: 665
28 China Nonferrous Metals Industry Association. China Molybdenum [M]. Beijing: Metallurgical Industry Press, 2013: 4
28 中国有色金属工业协会. 中国钼业 [M]. 北京: 冶金工业出版业, 2013: 4
29 Cheng L F, Zhang L T, Han J T. Preparation of Si-Mo oxidation protection coating for carbon-carbon composites [J]. High Technol. Lett., 1996, 6(4): 17
29 成来飞, 张立同, 韩金探. 液相法制备碳-碳Si-Mo防氧化涂层 [J]. 高技术通讯, 1996, 6(4): 17
30 Ingemarsson L, K.Hellström, Canovic S, et al. Oxidation behavior of a Mo(Si,Al)2 composite at 900-1600 ℃ in dry air [J]. J. Mater. Sci., 2013, 48: 1511
31 Dai D H, Liu M, Yu Z M, et al. Films and Coatings: Modern Surface Technology [M]. Changsha: Central South University Press, 2008: 105
31 戴达煌, 刘敏, 余志明等. 薄膜与涂层现代表面技术 [M]. 长沙: 中南大学出版社, 2008: 105
32 Hou S L, Liu Z D, Liu D Y, et al. Microstructure and oxidation resistance of Mo-Si and Mo-Si-Al alloy coatings prepared by electro-thermal explosion ultrahigh speed spraying [J]. Mater. Sci. Eng., 2009, A518: 108
33 Kuchino J, Shibayama T, Takahashi H, et al. Effect of microstructure on oxidation resistance of MoSi2 fabricated by spark plasma sintering [J]. Vacuum, 2004, 73: 623
34 Hou S X, Liu Z D, Liu D Y, et al. Effect of alloying with al on oxidation behavior of MoSi2 coatings at 1100 °C [J]. Surf. Coat. Technol., 2012, 206: 4466
35 Liu Y, Shao W, Wang C L, et al. Microstructure and oxidation behavior of Mo-Si-Al coating on Nb-Based alloy [J]. J. Alloy. Compd., 2018, 735: 2247
36 Hellström K, Persson P, Ström E. Oxidation behaviors and microstructural alterations of a Mo(Si,Al)2-based composite after heating at 1580 ℃ either in a furnace (Ex-Situ) or via alternating current (In-Situ) [J]. J. Eur. Ceram. Soc., 2015, 35: 513
37 Wang H, Liu Z G. A new method for preparation of compactness Mo-Si-B alloy [J]. Chin. J. Rare Met., 2011, 35: 679
37 王海, 刘志国. 致密Mo-Si-B合金制备的新方法 [J]. 稀有金属, 2011, 35: 679
38 Pan K M, Zhang L Q, Wang J, et al. Preparation and room temperature mechanical properties of T2 alloy in the Mo-Si-B system [J]. Rare Met. Mater. Eng., 2013, 42: 1080
38 潘昆明, 张来启, 王珏等. Mo-Si-B三元系中T2相合金制备及其室温力学性能 [J]. 稀有金属材料与工程, 2013, 42: 1080
39 Pi J L, Shao W, Zhou C G. Microstructural evolution and interdiffusion behavior of Mo-Si-B coating on Nb-Si based alloy [J]. Intermetallics, 2018, 95: 150
40 Pang J, Wang W, Zhou C G. Microstructure evolution and oxidation behavior of B modified MoSi2 coating on Nb-Si based alloys [J]. Corros. Sci., 2016, 105: 1
41 Riedl H, Vieweg A, Limbeck A, et al. Thermal stability and mechanical properties of boron enhanced Mo-Si coatings [J]. Surf. Coat. Technol., 2015, 280: 282
42 Perepezko J H. High temperature environmental resistant Mo-Si-B based coatings [J]. Int. J. Refract. Met. Hard Mater., 2018, 71: 246
43 Deng X K, Zhang G J, Wang T, et al. Microstructure and oxidation resistance of a multiphase Mo-Si-B ceramic coating on Mo substrates deposited by a plasma transferred arc process [J]. Ceram. Int., 2019, 45: 415
44 Kiryukhantsev-Korneev P V, Iatsyuk I V, Shvindina N V, et al. Comparative investigation of structure, mechanical properties, and oxidation resistance of Mo-Si-B and Mo-Al-Si-B coatings [J]. Corros. Sci., 2017, 123: 319
45 Nagasaki S, Hirabayashi M. Translated by Liu A S. Binary Alloy Phase-Diagrams [M]. Beijing: Metallurgical Industry Press, 2004: 275
45 长崎诚三, 平林真著, 刘安生译. 二元合金状态图集 [M]. 北京: 冶金工业出版社, 2004: 275
46 Yeom H, Maier B, Mariani R, et al. Magnetron sputter deposition of Zirconium-silicide coating for mitigating high temperature oxidation of Zirconium-alloy [J]. Surf. Coat. Technol., 2017, 316: 30
47 Choi H, Jang J, Zhang T F, et al. Effect of Si addition on the microstructure, mechanical properties and tribological properties of Zr-Si-N nanocomposite coatings deposited by a hybrid coating system [J]. Surf. Coat. Technol., 2014, 259: 707
48 Yin X W, Gutmanas E, Cheng L F, et al. Preparation of Zr-Si-C coating by chemical vapor reaction method [J]. J. Chin. Ceram. Soc., 2007, 35: 1419
48 殷小玮, Gutmanas E, 成来飞等. 化学气相反应法制备Zr-Si-C涂层 [J]. 硅酸盐学报, 2007, 35: 1419
49 Xu Y L, Sun W, Xiong X, et al. Microstructure and properties of ZrC-SiC multi-phase coatings prepared by thermal evaporation deposition and an In-Situ reaction method [J]. Surf. Coat. Technol., 2018, 349: 797
50 Wang D K, Dong S M, Zhou H J, et al. Fabrication and microstructure of 3D Cf/ZrC-SiC composites: Through RMI method with ZrO2 powders as pore-making agent [J]. Ceram. Int., 2016, 42: 6720
51 Huo C X, Guo L J, Wang C C, et al. Microstructure and ablation mechanism of SiC-ZrC-Al2O3 coating for SiC coated C/C composites under oxyacetylene torch test [J]. J. Alloy. Compd., 2018, 735: 914
52 Liu Y, Fu Q G, Guan Y W, et al. Ablation behavior of sharp-shape C/C-SiC-ZrB2 composites under oxyacetylene flame [J]. J. Alloy. Compd., 2017, 713: 19
53 Martin P J, Bendavid A, Cairney J M, et al. Nanocomposite Ti-Si-N, Zr-Si-N, Ti-Al-Si-N, Ti-Al-V-Si-N thin film coatings deposited by vacuum arc deposition [J]. Surf. Coat. Technol., 2005, 200: 2228
54 Daniel R, Musil J, Zeman P, et al. Thermal stability of magnetron sputtered Zr-Si-N films [J]. Surf. Coat. Technol., 2006, 201: 3368
55 Zeman P, Musil J. Difference in high-temperature oxidation resistance of amorphous Zr-Si-N and W-Si-N Films with a high Si content [J]. Appl. Surf. Sci., 2005, 252: 8319
56 Musil J, Dohnal P, Zeman P. Physical properties and high-temperature oxidation resistance of sputtered Si3N4/MoNx nanocomposite coatings [J]. J. Vacuum Sci. Technol., 2005, 23: 1568
57 Dong Y S, Zhao W J, Li Y R, et al. Influence of silicon on the microstructure and mechanical properties of Zr-Si-N composite films [J]. Appl. Surf. Sci., 2006, 252: 5057
58 Neto P C S, Freitas F G R, Fernandez D A R, et al. Investigation of microstructure and properties of magnetron sputtered Zr-Si-N thin films with different Si content [J]. Surf. Coat. Technol., 2018, 353: 355
59 Yalamanchili K, Forsén R, Jiménez-Piqué E, et al. Structure, deformation and fracture of arc evaporated Zr-Si-N hard films [J]. Surf. Coat. Technol., 2014, 258: 1100
60 Wu Z T, Qi Z B, Wei B B, et al. Understanding hardness evolution of Zr-Si-N nanocomposite coatings via investigating their deformation behaviors [J]. J. Eur. Ceram. Soc., 2016, 36: 3329
61 Yalamanchili K, Jiménez-Piqué E, Pelcastre L, et al. Influence of microstructure and mechanical properties on the tribological behavior of reactive arc deposited Zr-Si-N coatings at room and high temperature [J]. Surf. Coat. Technol., 2016, 304: 393
62 Chen Y I, Chang S C, Chang L C. Oxidation resistance and mechanical properties of Zr-Si-N coatings with cyclic gradient concentration [J]. Surf. Coat. Technol., 2017, 320: 168
63 Riedl H, Aschauer E, Koller C M, et al. Ti-Al-N/Mo-Si-B multilayers: an architectural arrangement for high temperature oxidation resistant hard coatings [J]. Surf. Coat. Technol., 2017, 328: 80
64 Aschauer E, Bartosik M, Bolvardi H, et al. Strain and stress analyses on thermally annealed Ti-Al-N/Mo-Si-B multilayer coatings by synchrotron X-Ray diffraction [J]. Surf. Coat. Technol., 2019, 361: 364
65 Li H X, Tang P, Wu Z T, et al. High-temperature thermal stability and tribological property of TiSiN/AlCrN nano-multilayer coatings [J]. J. Mechan. Eng., 2018, 54(6): 32
65 黎海旭, 唐鹏, 吴正涛等. TiSiN/AlCrN纳米多层涂层高温热稳定性及摩擦学特性研究 [J]. 机械工程学报, 2018, 54(6): 32
66 Wang X Y, Pang S Q. Wear mechanism analysis and endurance test of AlCrN coated carbide tools in cutting high-temperature alloy [J]. Trans. Beijing Inst. Technol., 2012, 32: 450
66 王新永, 庞思勤. AlCrN涂层硬质合金切削高温合金耐用度对比实验 [J]. 北京理工大学学报, 2012, 32: 450
67 Savage G. Carbon-Carbon Composites [M]. London: Publisher of Chapman & Hall, 1993
68 Guo H M, Shu W B, Qiao S R, et al. Preparation and properties of the multilayer oxidation protection coating for carbon-carbon composites [J]. Aerosp. Mater. Technol., 1998, (5): 37
68 郭海明, 舒武炳, 乔生儒等. C/C复合材料防氧化复合涂层的制备及其性能 [J]. 宇航材料工艺, 1998, (5): 37
69 Shu W B, Guo H M, Qiao S R, et al. Phase composition and surface morphology of TiC coating by chemical vapor deposition [J]. J. Northwest. Polytechn. Univ., 2000, 18: 229
69 舒武炳, 郭海明, 乔生儒等. 化学气相沉积法制备TiC涂层的相组成和表面形貌 [J]. 西北工业大学学报, 2000, 18: 229
70 Wang Y J, Zhang M Y, Su Z A, et al. Effect of pre-oxidation treatment time on C/C composites and its SiC anti-oxidation coating [J]. Mater. Sci. Eng. Powder Metall., 2018, 23: 591
70 王宇杰, 张明瑜, 苏哲安等. 预氧化处理时间对C/C复合材料及其SiC抗氧化涂层的影响 [J]. 粉末冶金材料科学与工程, 2018, 23: 591
71 Zhang X, Chen Z K, Xiong X. Preparation and high-temperature sintering mechanism of ZrB2 ceramic composite coatings for C/C-SiC composites [J]. J. Mater. Eng., 2015, 43(3): 1
71 张响, 陈招科, 熊翔. C/C-SiC复合材料表面ZrB2基陶瓷涂层的制备及高温烧结机理 [J]. 材料工程, 2015, 43(3): 1
72 Wang P P, Tong M D, Wang H H, et al. Gradient HfB2-SiC multilayer oxidation resistant coating for C/C composites [J]. Ceram. Int., 2018, 44: 20968
73 Jiang Y, Liu T Y, Ru H Q, et al. Oxidation and ablation protection of double layer HfB2-SiC-Si/SiC-Si coating for graphite materials [J]. J. Alloy. Compd., 2019, 782: 761
74 Xin J, Jia Y J, Zhao Z G, et al. A ZrC-SiC/SiC multilayer anti-ablation coating for ZrC modified C/C composites [J]. Vacuum, 2018, 157: 324
75 Gu S Y, Zhang S Y, Liu F, et al. Microstructure and thermal shock performance of Y2Hf2O7 coating deposited on SiC coated C/C composite [J]. Appl. Surf. Sci., 2018, 455: 849
76 Wang T Y, Luo R Y. Oxidation protection and mechanism of the HfB2-SiC-Si/SiC coatings modified by in-situ strengthening of SiC whiskers for C/C composites [J]. Ceram. Int., 2018, 44: 12370
77 Feng T, Li H J, Hu M H, et al. Oxidation and ablation resistance of the ZrB2-CrSi2-Si/SiC coating for C/C composites at high temperature [J]. J. Alloy. Compd., 2016, 662: 302
[1] 艾鹏,刘礼祥,李晓罡,姜文涛. TiAlSiN涂层对γ-TiAl基合金抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[2] 冯旭,费敬银,李倍,张嫚,郭琪琪. 组分调制Ni/Cr多层膜合金化制备Ni-Cr合金覆盖层的耐腐蚀特性[J]. 中国腐蚀与防护学报, 2019, 39(2): 167-175.
[3] 刘丹阳, 汪洁霞, 李劲风, 陈永来, 张绪虎, 许秀芝, 郑子樵. Mg,Ag,Zn微合金化Al-Cu-Li系铝锂合金T6态时效的晶间腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 183-190.
[4] 王越, 刘子利, 刘希琴, 章守东, 田青超. 热轧态Cr、Ni微合金化高强度耐候钢组织与耐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(1): 39-46.
[5] 骆立立, 费敬银, 王磊, 林西华, 王少兰. 组分调制Cu/Ni多层膜的合金化及其合金化镀层的耐蚀特性[J]. 中国腐蚀与防护学报, 2014, 34(6): 523-531.
[6] 尹成勇, 李澄, 彭晓燕, 王加余, 王艳慧, 郑顺丽, 李敏, 胡玮. 溶胶-凝胶法制备超疏水性纳米复合防腐涂层[J]. 中国腐蚀与防护学报, 2014, 34(3): 257-264.
[7] 朱俊谋, 姚正军, 蒋穹, 魏东博, 尹国贤, 罗西希, 周文斌. 无铬纳米锌铝涂层的微观组织及腐蚀性能[J]. 中国腐蚀与防护学报, 2013, 33(5): 425-429.
[8] 王应发,黄国胜,程旭东,李相波,邢路阔,郭娟,马焱. 热喷涂Zn-Ni复合涂层在海水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2013, 33(1): 29-35.
[9] 陈倩,辛丽,滕英元,朱圣龙,王福会. 氮化物涂层对钛合金抗循环氧化性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(1): 7-12.
[10] 王俊 李宁 王佳 许立坤. 有机覆膜对热烧结锌铝涂层耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2009, 29(6): 475-480.
[11] 郭平义 邵勇 李垒. 高能微弧合金化制备Fe3Al微晶涂层及其高温氧化性能[J]. 中国腐蚀与防护学报, 2009, 29(6): 431-436.
[12] 刘建国; 龚高平; 严川伟 . 聚合物/达克罗复合涂层体系在3.5%NaCl中耐蚀性能的EIS研究[J]. 中国腐蚀与防护学报, 2006, 26(2): 89-93 .
[13] 田秀娟; 王福会; 李庆芬 . 搪瓷/NiCrAlY复合涂层的抗高温氧化及热腐蚀行为[J]. 中国腐蚀与防护学报, 2005, 25(6): 344-350 .
[14] 邓畅光; 邝子奇 . 稀土硅铁对TBCs梯度热障涂层组织与性能影响的研究[J]. 中国腐蚀与防护学报, 2002, 22(3): 176-179 .
[15] 赵泽良; 牛焱; F.Gesmundo . 纳米晶Ni-Ag合金在600-700℃的空气氧化[J]. 中国腐蚀与防护学报, 2001, 21(5): 257-264 .