Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (3): 273-280    DOI: 10.11902/1005.4537.2018.178
  研究报告 本期目录 | 过刊浏览 |
Ni-Cr-P化学镀层的制备与电化学腐蚀行为
孙硕(), 杨杰, 钱薪竹, 常人丽
沈阳工业大学理学院 沈阳 110870
Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating
SUN Shuo(), YANG Jie, QIAN Xinzhu, CHANG Renli
College of Science, Shenyang University of Technology, Shenyang 110870, China
全文: PDF(3481 KB)   HTML
摘要: 

通过化学镀技术制备Ni-Cr-P三元合金镀层。利用称重法,SEM,EDS,XRD和电化学测试等方法,研究镀液中CrCl3,C3H6O3,C2H5NO2和K2C2O4浓度对Ni-Cr-P镀层的沉积速率、Cr含量及其在模拟燃料电池环境中电化学腐蚀行为的影响。结果表明,CrCl3浓度增加,沉积速率提高;随着C3H6O3,C2H5NO2和K2C2O4浓度的增加,沉积速率不断降低。Ni-Cr-P镀层的表面形貌呈胞状结构,镀层为非晶和微晶混合结构。Ni-Cr-P镀层的自腐蚀电位远高于Ni-P二元合金镀层的,向正移动约0.25 V;其电荷转移电阻增大,腐蚀电流密度降低了约两个数量级,Ni-Cr-P三元合金镀层的耐蚀性明显优于Ni-P二元合金镀层的。

关键词 化学镀Ni-Cr-P合金镀层配位剂电化学阻抗极化曲线    
Abstract

Ni-Cr-P alloy coatings on Q235 steel were prepared by electroless plating. The effect of CrCl3, C3H6O3, C2H5NO2 and K2C2O4 on the structure, composition and corrosion resistance of the prepared coatings was investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that with the increase of concentration of lactic acid, glycine, and potassium oxalate, the deposition rate was decreased continuously. In the contrast, the deposition rate was increased continuously with the increase of concentration of chromium chloride. The Ni-Cr-P coatings presented a surface morphology of cauliflower-like microstructures composed of a mixture of polycrystalline and amorphous. Notably, the anticorrosion performance of the Ni-Cr-P coatings were found to be much better than that of the Ni-P coatings.

Key wordselectroless    Ni-Cr-P alloy coating    complexing agent    AC impedance    polarization curve
收稿日期: 2018-11-27     
ZTFLH:  TD123  
基金资助:国家科技基础条件平台建设项目(2005DKA10400-15-Z04)
通讯作者: 孙硕     E-mail: sunshuo@sut.edu.cn
Corresponding author: SUN Shuo     E-mail: sunshuo@sut.edu.cn
作者简介: 孙硕,男,1972年生,博士,副教授

引用本文:

孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
Shuo SUN, Jie YANG, Xinzhu QIAN, Renli CHANG. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating. Journal of Chinese Society for Corrosion and protection, 2020, 40(3): 273-280.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.178      或      https://www.jcscp.org/CN/Y2020/V40/I3/273

图1  镀液中CrCl3浓度对镀层沉积速率和Cr含量的影响
图2  不同CrCl3浓度条件下Ni-Cr-P镀层在0.5 mol·L-1硫酸溶液中的动电位极化曲线和电化学阻抗谱
c(CrCl3) g·L-1EcorrVIcorrμA·cm-2RpΩ·cm2RfΩ·cm2RctΩ·cm2
3-0.0449.278505544691417
5-0.0686.971601950421935
10-0.0857.178598444271233
15-0.0359.40451151409320.9
20-0.1908.74147904575886.3
表1  Ni-Cr-P镀层在0.5 mol·L-1硫酸溶液中的极化曲线和EIS拟合参数
图3  C3H6O3浓度对沉积速率和Cr含量的影响
图4  不同浓度C3H6O3条件下Ni-Cr-P镀层在0.5 mol·L-1硫酸溶液中的动电位极化曲线和电化学阻抗谱
c(C3H6O3) mL·L-1EcorrVIcorrμA·cm-2RpΩ·cm2RfΩ·cm2RctΩ·cm2
20-0.0857.178598443671106
30-0.0808.225631241661597
35-0.0719.320509537061583
40-0.0789.65851193222747.4
表2  Ni-Cr-P镀层在0.5 mol·L-1硫酸溶液中的极化曲线和EIS拟合参数
图5  甘氨酸浓度对沉积速率和Cr含量的影响
图6  不同C2H5NO2浓度条件下Ni-Cr-P镀层在0.5 mol·L-1硫酸溶液中的动电位极化曲线和电化学阻抗谱
c(C2H5NO2) g·L-1EcorrVIcorrμA·cm-2RpΩ·cm2RfΩ·cm2RctΩ·cm2
0.1-0.06014.4504819---3592
4-0.05119.38025802720924
6-0.0627.787512341901561
15-0.0738.108543238011366
表3  Ni-Cr-P镀层在0.5 mol·L-1硫酸溶液中的极化曲线和EIS拟合参数
图7  K2C2O4浓度对沉积速率和Cr含量的影响
图8  不同K2C2O4浓度条件下Ni-Cr-P镀层在0.5 mol·L-1硫酸溶液中的动电位极化曲线和电化学阻抗谱
c(K2C2O4) g·L-1EcorrVIcorrμA·cm-2RpΩ·cm2RfΩ·cm2RctΩ·cm2
0-0.26910022751566503.9
2.5-0.1524.849775146484420
5-0.1308.818473127661305
10-0.1436.626586333921670
表4  Ni-Cr-P镀层在0.5 mol·L-1硫酸溶液中的极化曲线和EIS拟合参数
图9  Ni-P和Ni-Cr-P镀层在0.5 mol·L-1硫酸溶液中的动电位极化曲线和电化学阻抗谱
CoatingEcorrVIcorrμA·cm-2RpΩ·cm2RfΩ·cm2RctΩ·cm2
Ni-P-0.41294.81467---441
Ni-Cr-P-0.1584.850775546584430
表5  Ni-Cr-P镀层在0.5 mol·L-1硫酸溶液中的极化曲线和EIS拟合参数
图10  Ni-Cr-P合金镀层的表面形貌
图11  Ni-Cr-P合金镀层的XRD谱
[1] Ching Y B, Yu Y H, Chu L C, et al. Surface modifications of aluminum alloy 5052 for bipolar plates using an electroless deposition process [J]. J. Power Sources, 2008, 183: 174
doi: 10.1016/j.jpowsour.2008.04.082
[2] Yao Z H, Zhag Z Z, Zhao F X, et al. Electroless plating Ni-Cu-P surface modification of stainless steel polar plates for PEMFC [J]. Corros. Prot., 2010, 31: 431
[2] (姚振虎, 张振忠, 赵芳霞等. 质子交换膜燃料电池双极板化学镀Ni-Cu-P表面改性 [J]. 腐蚀与防护, 2010, 31: 431)
[3] AlZahrani A, Alhamed Y, Petrov L, et al. Mechanical and corrosion behavior of amorphous and crystalline electroless Ni-W-P coatings [J]. J. Solid State Electrochem., 2014, 18: 1951
doi: 10.1007/s10008-014-2437-8
[4] Yang Y, Balaraju J N, Huang Y Z, et al. Interface reaction between electroless Ni-Sn-P metallization and lead-free Sn-3.5Ag solder with suppressed Ni3P formation [J]. J. Electr. Mater., 2014, 43: 4103
doi: 10.1007/s11664-014-3306-z
[5] Roy S, Sahoo P. Parametric optimization of corrosion and wear of electroless Ni-P-Cu coating using grey relational coefficient coupled with weighted principal component analysis [J]. Int. J. Mech. Mater. Eng., 2014, 1: 10
[6] Chang H S, Li W, Li J W. Preparation of corrosion-resistant, EMI shielding and magnetic veneer-based composite via Ni-Fe-P alloy deposition [J]. J. Mater. Sci., 2015, 26: 7096
[7] Wang H, Xie M, Zong Q, et al. Electroless Ni-W-Cr-P alloy coating with improved electrocatalytic hydrogen evolution performance [J]. Surf. Eng., 2015, 31: 226
doi: 10.1179/1743294414Y.0000000373
[8] Che L, Xiao M, Xu H, et al. Enhanced corrosion resistance and microhardness of titanium with electroless deposition Ni-W-Cr-P coating [J]. Mater. Manuf. Process., 2013, 28: 899
doi: 10.1080/10426914.2013.792412
[9] Zhang L, Jin Y, Peng B, et al. Effects of annealing temperature on the crystal structure and properties of electroless deposited Ni-W-Cr-P alloy coatings [J]. Appl. Surf. Sci., 2008, 255: 1686
doi: 10.1016/j.apsusc.2008.06.012
[10] Jin Z Y, Li P P, Zheng B Z, et al. The structure and properties of electroless Ni-Mo-Cr-P coatings on copper alloy [J]. Mater. Corros., 2013, 64: 341
[11] Shashikala A R, Mayanna S M, Sharma A K. Studies and characterisation of electroless Ni-Cr-P alloy coating [J]. Trans. IMF, 2007, 85: 320
doi: 10.1179/174591907X246483
[12] Chen W Y, Tien S K, Duh J G. Thermal stability and microstructure characterization of sputtered Ni-P and Ni-P-Cr coatings [J]. Surf. Coat. Technol., 2004, 188/189: 489
[13] Jin Y, Sun P, Liu Q L, et al. Effects of heat-treatment on structure and properties of electroless Ni-Cr-P alloy plating on the surface of stainless steel [J]. Trans. Mater. Heat Treat., 2012, 33(3): 146
[13] (晋勇, 孙平, 刘巧玲等. 热处理对不锈钢表面化学镀Ni-Cr-P合金镀层结构及性能的影响 [J]. 材料热处理学报, 2012, 33(3): 146)
[14] Xiao X, Long Y Q, Zhong P, et al. Electroless nickel-chromiun-phosphorus alloy process [J]. Surf. Technol., 2003, 32(2): 47
[14] (肖鑫, 龙有前, 钟萍等. 化学镀Ni-Cr-P合金工艺研究 [J]. 表面技术, 2003, 32(2): 47)
[15] Yang Y G, Xu S H, Sun D B, et al. Formula of electroless plating solution [J]. Surf. Technol., 1998, 28(4): 43
[15] (杨玉国, 许韶华, 孙冬柏等. Ni-Cr-P化学镀液的配制方法 [J]. 表面技术, 1998, 28(4): 43)
[16] Huang X M, Xu X P, Li Y, et al. Study on compounding of complexing agents in electroless Ni-Cr-P plating [J]. Electroplat. Pollut. Control, 2016, 36(1): 21
[16] (黄小梅, 徐晓鹏, 李阳等. Ni-Cr-P化学镀液中配位剂复配的研究 [J]. 电镀与环保, 2016, 36(1): 21)
[17] Zeng Z X, Zhang Y X, Zhao W J, et al. Role of complexing ligands in trivalent chromium electrodeposition [J]. Surf. Coat. Technol., 2011, 205: 4771
doi: 10.1016/j.surfcoat.2011.04.019
[18] Li L, Wang Z, Wang M Y, et al. Modulation of active Cr(III) complexes by bath preparation to adjust Cr(III) electrodeposition [J]. Int. J. Miner. Metall. Mater., 2013, 20: 902
[19] Tharamani C N, Hoor F S, Begum N S, et al. Microstructure, surface and electrochemical studies of electroless Cr-P coatings tailored for the methanol oxidative fuel cell [J]. J. Solid State Electrochem., 2005, 9: 476
doi: 10.1007/s10008-004-0580-3
[20] Liao Z H, Song B, Ren Z, et al. Electrochemical corrosion behavior of matrix and weld seam of X70 steel in Na2CO3+NaHCO3 solutions [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 158
[20] (廖梓含, 宋博, 任泽等. X70 钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2018, 38: 158)
doi: 10.11902/1005.4537.2017.043
[21] Li N, Yuan G W, Li D Y. Theory and Technology of Electroless Nickel Planting [M]. Harbin: Harbin Institute of Technology Press, 2000: 159
[21] (李宁, 袁国伟, 黎德育. 化学镀镍基合金理论与技术 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2000: 159)
[22] Jiang X X, Shen W. The Fundamentals and Practice of Electroless Plating [M]. Beijing: National Defense Industry Press, 2000: 29
[22] (姜晓霞, 沈伟. 化学镀理论及实践 [M]. 北京: 国防工业出版社, 2000: 29)
[23] Tu Z M, Zheng J, Li N, et al. Recent development and tendency of trivalent chromium plating [J]. Surf. Technol., 2007, 36(5): 59
[23] (屠振密, 郑剑, 李宁等. 三价铬电镀铬现状及发展趋势 [J]. 表面技术, 2007, 36(5): 59)
[24] Barsoukov E, Macdonald J R. Impedance Spectroscopy: Theory, Experiment, and Applications [M]. 2nd Ed., New York: John Wiley & Sons, 2005
[1] 李子运, 王贵, 罗思维, 邓培昌, 胡杰珍, 邓俊豪, 徐敬明. 热带海洋大气环境中EH36船板钢早期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[2] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[3] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[4] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[5] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[6] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[7] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[8] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[9] 焦明远, 金伟良, 毛江鸿, 李腾, 夏晋. 电化学修复过程混凝土内环境对钢筋表面析氢影响的实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[10] 宋增意, 刘莉, 邓丽, 孙元, 周亦胄. N5镍基单晶高温合金在王水中的电化学溶解行为研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 365-372.
[11] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[12] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[13] 姚望, 周和荣, 肖葵, 刘鹏洋, 但佳永, 吴润. 中性盐雾环境中DC06超深冲钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 241-247.
[14] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[15] 桂琪, 郑大江, 宋光铃. 醇酸清漆保护性的电化学加速评价[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.