Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (2): 235-242    DOI: 10.11902/1005.4537.2021.084
  研究报告 本期目录 | 过刊浏览 |
聚乙二醇-600对酸性Zn-Ni合金的电沉积行为及镀层耐蚀性影响的研究
刘永强1, 刘光明1(), 范文学2, 甘鸿禹1, 唐荣茂1, 师超1
1.南昌航空大学材料科学与工程学院 南昌 330063
2.安徽鼎旺环保材料科技有限公司 宣城 242000
Effect of Polyethylene Glycol-600 on Acidic Zn-Ni Alloy Electroplating and Its Corrosion Resistance
LIU Yongqiang1, LIU Guangming1(), FAN Wenxue2, GAN Hongyu1, TANG Rongmao1, SHI Chao1
1.School of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2.China Anhui Dingwang Environmental Protection Material Technology Co. Ltd. , Xuancheng 242000, China
全文: PDF(5729 KB)   HTML
摘要: 

采用循环伏安 (CV) 曲线研究了聚乙二醇-600 (PEG-600) 在酸性Zn-Ni合金基础镀液中对Zn-Ni合金电沉积行为的影响;采用电化学阻抗谱 (EIS)、动电位极化曲线与表面形貌分析方法研究了酸性Zn-Ni合金基础镀液中,聚乙二醇-600的浓度对Zn-Ni合金镀层表面微观形貌及耐蚀性的影响。结果表明,PEG-600作为一种非离子型表面活性剂,在基体镀件表面具有较强的吸附能力,基础镀液中添加PEG-600会影响Zn-Ni合金的电沉积过程,使Zn2+与Ni2+更难迁移至镀件表面,导致Zn-Ni合金的共沉积峰位置向更负电位方向移动,从而使阴极过电位升高。基础镀液中随PEG-600浓度的增加,电沉积所得Zn-Ni合金镀层的耐蚀性呈先增大后减小的趋势。当PEG-600浓度为3.33×10-2 mol/L时,Zn-Ni合金镀层耐蚀性能达到最佳,其电化学阻抗模值为1960 Ω·cm2、自腐蚀电流为1.97×10-5 A·cm-2,并且能得到均一的金属间化合物γ相和最优的表面微观形貌。

关键词 聚乙二醇-600酸性Zn-Ni镀液电沉积耐蚀性    
Abstract

The effect of polyethylene glycol-600 (PEG-600) on the acidic Zn-Ni alloy plating process was studied by means of cyclic voltammetry (CV) curve measurement. The influence of the concentration of polyethylene glycol-600 (PEG-600) in the acidic Zn-Ni alloy plating electrolyte on the corrosion resistance and the surface morphology of the Zn-Ni alloy coatings was characterized via electrochemical impedance spectroscopy (EIS), Taffel polarization curve measurement and surface morphology analysis method. The results show that PEG-600, as a non-ionic surfactant, has a strong adsorption capacity on the surface of cathode. The addition of PEG-600 to the plating electrolyte will affect the electroplating process of the Zn-Ni alloy, making it more difficult for Zn2+ and Ni2+ to move to the surface of the cathode, as a result, the co-deposition peak position of Zn-Ni may move towards negative potential direction, so that the cathode overpotential rises. With the increase of the concentration of PEG-600 in the plating electrolyte, the corrosion resistance of the electroplated Zn-Ni alloy coating increases first and then decreases. When the concentration of PEG-600 is 3.33×10-2 mol/L, the corrosion resistance of the electroplated Zn-Ni alloy coating reaches the best, namely the coating with electrochemical impedance of 1960 Ω·cm2 and free-corrosion current of 1.97×10-5 A·cm-2, and the Zn-Ni alloy coating consists of uniformly intermetallic compound γ phase with better surface morphology in micro scale.

Key wordspolyethylene glycol-600    acidic Zn-Ni plating bath    electrodeposition    corrosion resistance
收稿日期: 2021-04-19     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51961028)
通讯作者: 刘光明     E-mail: gemliu@126.com
Corresponding author: LIU Guangming     E-mail: gemliu@126.com
作者简介: 刘永强,男,1996年生,硕士生

引用本文:

刘永强, 刘光明, 范文学, 甘鸿禹, 唐荣茂, 师超. 聚乙二醇-600对酸性Zn-Ni合金的电沉积行为及镀层耐蚀性影响的研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 235-242.
Yongqiang LIU, Guangming LIU, Wenxue FAN, Hongyu GAN, Rongmao TANG, Chao SHI. Effect of Polyethylene Glycol-600 on Acidic Zn-Ni Alloy Electroplating and Its Corrosion Resistance. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 235-242.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.084      或      https://www.jcscp.org/CN/Y2022/V42/I2/235

图1  Zn-Ni合金电沉积装置示意图
图2  不同镀液中所测循环伏安曲线
图3  Zn-Ni合金镀层的红外光谱图
图4  基础镀液中添加不同浓度的PEG-600电沉积所得Zn-Ni合金镀层的表面形貌及能谱
图5  基础镀液中未添加与添加PEG-600后电沉积所得Zn-Ni合金镀层的XRD谱
图6  基础镀液中添加不同浓度的PEG-600电沉积Zn-Ni合金镀层的极化曲线
Content / mol·L-1Ecorr / VIcorr / A·cm-2βc / V·dec-1βa / V·dec-1
Blank-0.942.40×10-421.63.04
1.67×10-2-0.856.16×10-519.12.62
3.33×10-2-0.711.97×10-522.73.32
4.16×10-2-0.783.73×10-516.03.13
表1  基础镀液中添加不同浓度的PEG-600电沉积Zn-Ni合金镀层的极化曲线拟合参数
图7  基础镀液中添加不同浓度PEG-600的电沉积Zn-Ni合金镀层的电化学阻抗谱
图8  Zn-Ni合金镀层电化学阻抗谱的等效电路
Content / mol·L-1RS / Ω·cm2Q1 / 10-4S·s-n·cm-2Qn-1L / 103H·cm2Rct1 / 102Ω·cm2Q2 / 10-4 S·s-n·cm-2Qn-2Rct2 / 102Ω·cm2
Blank8.480.350.841.963.875.120.912.45
1.67×10-27.914.800.652.557.893.100.771.62
3.33×10-28.500.560.803.2112.777.960.826.83
4.16×10-28.202.570.742.579.564.270.905.11
表2  Zn-Ni合金镀层电化学阻抗谱等效电路的拟合参数
1 Cao L, Zuo Z Z, Tian Z B, et al. Research status and prospect of Zn-Ni alloy electroplating [J]. Mater. Prot., 2010, 43(4): 33
1 曹浪, 左正忠, 田志斌等. 电镀锌镍合金的研究现状与展望 [J]. 材料保护, 2010, 43(4): 33
2 Zhou X R, Wang F, Zhang K C. Effect of operating conditions on Ni content of Zn-Ni alloy deposit in acidic solution [J]. Electroplat. Finish., 2007, 26(6): 10
2 周晓荣, 王飞, 张开诚. 酸性液电镀Zn-Ni合金的操作条件对镀层中Ni含量的影响 [J]. 电镀与涂饰, 2007, 26(6): 10
3 Chang Q H, Chen F, Chen Y F. Effect of Ni/Zn ratio in plating solution on Zn-Ni electroplating of acidic liquid [J]. Hot Work. Technol., 2009, 38(12): 99
3 苌清华, 陈峰, 陈艳芳. 镀液中镍锌含量比对酸性液电镀Zn-Ni合金的影响 [J]. 热加工工艺, 2009, 38(12): 99
4 Li H F, Zhou X R, Liu L M, et al. Study of bright zinc-nickel electroplating in weak acidic solutions [J]. Electroplat. Finish., 1999, 18(1): 8
4 李华锋, 周晓荣, 柳立名等. 弱酸性电镀光亮锌镍合金的研究 [J]. 电镀与涂饰, 1999, 18(1): 8
5 Wang S. The Electrodeposition of preparation and its corrosion resistance of zinc, nickel and zinc-nickel alloy layers on the surface of 45# steel substrate [D]. Guilin: Guangxi Normal University, 2016
5 王顺. 45号钢基材表面锌、镍和锌镍合金层的电沉积制备及其耐腐蚀性研究 [D]. 桂林: 广西师范大学, 2016
6 Shang H W. Study on the high strength steel about low hydrogen embrittlement process of Zn-Ni alloy eletroplating and additive [D]. Harbin: Harbin Institute of Technology, 2008
6 商红武. 高强钢低氢脆电镀锌镍合金工艺及添加剂的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2008
7 Wu X Y. Technology of zinc-nickel alloy electroplating from cyanide-free alkaline solutions [D]. Guangzhou: South China University of Technology, 2010
7 吴雪颖. 碱性无氰电镀锌-镍合金工艺的研究 [D]. 广州: 华南理工大学, 2010
8 Qiao X P, Li H L, Zhao W Z, et al. Effects of deposition temperature on electrodeposition of zinc-nickel alloy coatings [J]. Electrochim. Acta, 2013, 89: 771
9 Pei H Z, Huang P, Shi Q N, et al. Research to the corrosion resistance of the alkaline zinc-nickel alloy plates [J]. Adv. Mater. Res., 2013, 616-618: 1756
10 An M Z, Feng Z B, Ren L L, et al. Research progress and application status of electrodeposited Zn-Ni alloy coatings [J]. Mater. Sci. Technol., 2017, 25(4): 1
10 安茂忠, 冯忠宝, 任丽丽等. 电镀Zn-Ni合金研究进展与应用现状 [J]. 材料科学与工艺, 2017, 25(4): 1
11 Basavanna S, Naik Y A. Electrochemical studies of Zn-Ni alloy coatings from acid chloride bath [J]. J. Appl. Electrochem., 2009, 39: 1975
12 Feng Z B, Wang L, Li D G, et al. Electrochemical studies of 2-aminopyridine on nanocrystalline Zn-Ni alloy electrodeposition [J]. J. Electroanalyt. Chem., 2019, 835: 114
13 Sinoimeri E, Fernandes V M, Cognard J, et al. Uncommon biphasic behaviour induced by very high metal ion concentrations in HCl/H2O/[P44414]Cl and HCl/H2O/PEG-600 systems [J]. Phys. Chem. Chem. Phys., 2020, 22: 23226
14 Chen H J, Wang R, Ding W X, et al. Effect of polymerization degree of polyethylene glycol on microtopography and adsorbability of mesoporous η-Al2O3 fibers [J]. Acta Mater. Compos. Sin., 2014, 31: 845
14 陈华军, 王锐, 丁梧秀等. 聚乙二醇聚合度对介孔η-Al2O3纤维形貌及吸附能力的影响 [J]. 复合材料学报, 2014, 31: 845
15 Yang H Y, Guo X W, Chen X B, et al. On the electrodeposition of nickel-zinc alloys from a eutectic-based ionic liquid [J]. Electrochim. Acta, 2012, 63: 131
16 Feng Z B, Li Q Y, Zhang J Q, et al. Electrochemical behaviors and properties of Zn-Ni alloys obtained from alkaline Non-cyanide bath using 5,5′-dimethylhydantoin as complexing agent [J]. J. Electrochem. Soc., 2015, 162: D412
17 Addi Y, Khouider A. Electrodeposition of Ni-Zn alloys on steel from acidic solution in presence of boric acid [J]. ECS Trans., 2013, 45: 79
18 Huang M L, Wu Y Z, Mo Y Q, et al. Effect of additives on zinc electrodeposition in potassium chloride bath [J]. Mater. Prot., 2010, 43(7): 1
18 黄美玲, 吴育忠, 莫烨强等. 添加剂对氯化钾溶液中锌电沉积的影响 [J]. 材料保护, 2010, 43(7): 1
19 Xu Y Y, Zhang Y, Zhang Y X, et al. MIR spectroscopy study of polyethylene glycol [J]. Qilu Petrochem. Technol., 2020, 48: 188
19 徐元媛, 张莹, 张雨萱等. 聚乙二醇中红外光谱研究 [J]. 齐鲁石油化工, 2020, 48: 188
20 Wang Y T, Wang K X, Gao P X, et al. Inhibition for Zn corrosion by starch grafted copolymer [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 131
20 王亚婷, 王棵旭, 高鹏翔等. 淀粉接枝共聚物对Zn的缓蚀性能 [J]. 中国腐蚀与防护学报, 2021, 41: 131
21 Hao Y L, Yang W Z, Yin X S, et al. Effect of surfactants on the properties of electroless Ni-P-Al2O3 composite coatings [J]. Surf. Technol., 2016, 45(6): 15
21 郝亚莉, 杨文忠, 尹晓爽等. 表面活性剂对Ni-P-Al2O3复合镀层性能的影响 [J]. 表面技术, 2016, 45(6): 15
22 Xue Y Z, Liang J, Wang W, et al. Influence of polyethyleneglycol additive on pulse electrodeposition of zinc on magnesium alloy in reline tonic liquid as well as microstructure and corrosion resistance of zinc coating [J]. Mater. Prot., 2013, 46(9): 1
22 薛宇宙, 梁军, 王巍等. 添加剂聚乙二醇400对Reline离子液体电沉积Zn过程及镀层组织结构与耐蚀性的影响 [J]. 材料保护, 2013, 46(9): 1
23 Xu W. Preparation and corrosion resistance of Go and Vteo modified zinc-nickel coating on low carbon steel surface [D]. Harbin: Harbin Institute of Technology, 2019
23 徐文. 低碳钢表面GO和VTEO改性锌镍镀层的制备及耐蚀性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019
[1] 柳皓晨, 范林, 张海兵, 王莹莹, 唐鋆磊, 白雪寒, 孙明先. 钛合金深海应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[2] 尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 93-98.
[3] 房豪杰, 曲华, 杨黎晖, 曾庆亚, 王丽丹, 袁宁, 侯保荣, 曹立新, 袁迅道. 9C系列粉末冶金高耐蚀铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[4] 周殿买, 姜磊, 王美婷, 梁洪嘉, 肖云龙, 郑黎, 于宝义. Ce(NO3)2浓度及硅酸盐封孔处理对高铁枕梁用Mg-Zn-Y-Ca合金表面钙系磷化膜的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[5] 刘星, 冉斗, 孟惠民, 李全德, 巩秀芳, 隆彬. 表面状态对TC4钛合金的耐蚀性影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[6] 丁玉康, 陈国美, 倪自丰, 刘雅玄, 钱善华, 卞达, 赵永武. 六方氮化硼改性硅烷膜耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[7] 吴林涛, 周泽华, 张欣, 杨光恒, 张凯城, 王光宇. 等离子喷涂FeCrMoCBY铁基非晶涂层耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[8] 刘宏宇, 张喜庆, 滕莹雪, 李胜利. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[9] 杨光恒, 周泽华, 张欣, 吴林涛, 梅婉. 磁场作用下不同Mg含量Al-Mg合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
[10] 张陈扬, 刘慧丛, 韩东晓, 朱立群, 李卫平. 微米级SiC/Ni-Co-P复合镀层的制备及影响因素[J]. 中国腐蚀与防护学报, 2021, 41(5): 579-584.
[11] 郎丰军, 黄峰, 徐进桥, 李利巍, 岳江波, 刘静. Mg处理X70级抗酸性海底管线钢 (X70MOS) 成分设计及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[12] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[13] 王东亮, 丁华平, 马云飞, 龚攀, 王新云. 非晶合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.
[14] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[15] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.