Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (5): 633-638    DOI: 10.11902/1005.4537.2020.236
  研究报告 本期目录 | 过刊浏览 |
磁场作用下不同Mg含量Al-Mg合金腐蚀行为研究
杨光恒, 周泽华(), 张欣(), 吴林涛, 梅婉
河海大学力学与材料学院 南京 211100
Influence of Magnetic Field on Corrosion Behavior of Al-Mg Alloys with Different Mg Content
YANG Guangheng, ZHOU Zehua(), ZHANG Xin(), WU Lintao, MEI Wan
College of Mechanics and Materials, Hohai University, Nanjing 211100, China
全文: PDF(9838 KB)   HTML
摘要: 

通过扫描电子显微镜、能谱分析仪、电化学工作站研究了磁场对不同Mg含量Al-Mg合金腐蚀行为的影响;通过自制磁场装置对氯化钠溶液进行磁化处理,研究磁场对溶液性质的影响。探究磁场对带电粒子的作用和磁场对溶液性质的改变对铝镁合金腐蚀过程的影响差异。结果表明,溶液经过磁场处理后,pH和电导率增加,进而导致合金的腐蚀速率升高。在磁场的作用下,顺磁粒子Alad+被聚集在合金表面,抑制腐蚀进一步发展,从而降低了铝镁合金的腐蚀速率。磁场对带电粒子的作用大于溶液pH和电导率变化对合金腐蚀行为的影响,因此整体上导致合金腐蚀速率的降低。

关键词 磁场铝镁合金耐蚀性磁化处理    
Abstract

The influence of magnetic field on the corrosion behavior of Al-Mg alloys with different Mg content in 3.5%NaCl solutions was characterized by electrochemical workstation, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The NaCl solution was magnetized in desired magnetic fields in order to reveal the effect of magnetic field on the properties of the solution and the corrosion performance of Al-Mg alloys. The difference between the effect of magnetic field on charged particles and solution properties during the corrosion process of Al-Mg alloys was also investigated. It was found that the pH and conductivity of the solution increased by the action of magnetic field, which led to the increase of corrosion rate of the alloys, meanwhile, paramagnetic particles are gathered on the alloy surface to inhibit the further development of corrosion of Al-Mg alloys. Therefore, the compition of the above two processes resulted in the decrease of corrosion rate of the alloys, which may be ascribed to that the effect of magnetic field on charged particles is greater than that of pH and conductivity of the solution.

Key wordsmagnetic field    Al-Mg alloy    corrosion resistance    magnetization treatment
收稿日期: 2020-11-16     
ZTFLH:  TG146.21  
基金资助:国家自然科学基金(51909071);中央高校基本科研业务费项目(B200202133);江苏省自然科学基金(BK20190493)
通讯作者: 周泽华,张欣     E-mail: zhouzehua@hhu.edu.cn;zhangxin.007@163.com
Corresponding author: ZHOU Zehua,ZHANG Xin     E-mail: zhouzehua@hhu.edu.cn;zhangxin.007@163.com
作者简介: 杨光恒,男,1997年生,硕士生

引用本文:

杨光恒, 周泽华, 张欣, 吴林涛, 梅婉. 磁场作用下不同Mg含量Al-Mg合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
Guangheng YANG, Zehua ZHOU, Xin ZHANG, Lintao WU, Wan MEI. Influence of Magnetic Field on Corrosion Behavior of Al-Mg Alloys with Different Mg Content. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 633-638.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.236      或      https://www.jcscp.org/CN/Y2021/V41/I5/633

图1  磁场处理装置
图2  不同镁含量Al-Mg合金在3.5%NaCl溶液中浸泡48 h后表面微观形貌
图3  Al-3.0Mg合金在无磁场环境下3.5%NaCl溶液中浸泡48 h后点蚀坑形貌及EDS分析
图4  非磁场和0.4 T磁场环境下不同Mg含量Al-Mg合金动电位极化曲线
MgEcorr / V

Ecorr

V

Icorr / μA·cm-2IcorrμA·cm-2Epit / V

Epit

V

0 T0.4 T0 T0.4 T0 T0.4 T
0%-1.215-0.9880.2278.5632.139-6.424-0.721-0.743-0.022
1.5%-1.125-1.1160.0094.5892.875-1.714-0.776-0.7500.026
3.0%-1.214-1.1670.04712.058.510-3.54-0.772-0.7610.011
5.0%-1.296-1.2430.05314.5111.50-3.01-0.794-0.7860.008
8.0%-1.314-1.2600.05428.3821.62-6.76-0.842-0.8210.021
表1  不同Mg含量的Al-Mg合金的Ecorr,Icorr,Epit值
图5  经0.4 T磁场处理以及处理后3.5%NaCl溶液的pH值和电导率变化曲线
图6  Al-3.0%Mg合金非磁场和0.4 T磁场环境下在不同溶液中的动电位极化曲线,阻抗谱及等效电路
SolutionEcorr / VIcorr / μA·cm-2Rs / Ω·cm2C / F·cm2Rt / Ω·cm2
Untreated-1.21412.057.5931.087×10-53.444×104
Treated-1.22612.617.2311.307×10-52.798×104
表2  Al-3.0%Mg合金在无外加磁场条件下不同溶液中的Ecorr,Icorr值和阻抗参数
SolutionEcorr / VIcorr / μA·cm-2Rs / Ω·cm2C / F·cm2Rt / Ω·cm2
Untreated-1.1648.518.7454.665×10-63.234×104
Treated-1.20312.795.8411.251×10-52.041×104
表3  Al-3.0%Mg合金在0.4 T磁场环境下在不同溶液中的Ecorr,Icorr值和阻抗参数
1 Liu L, Zhang D. Research progress in electromagnetic shielding materials [J]. J. Funct. Mater., 2015, 46: 3016
1 刘琳, 张东. 电磁屏蔽材料的研究进展 [J]. 功能材料, 2015, 46: 3016
2 Mei N, Wang X Y, Wang X, et al. Research on shielding effectiveness calculation method of electromagnetic shielding materials [J]. Solid State Phenom., 2020, 304: 137
3 Wu Z G, Song M, He Y H. Effects of Er on the microstructure and mechanical properties of an as-extruded Al-Mg alloy [J]. Mater. Sci. Eng., 2009, 504A: 183
4 Liang Z G, Yang M Y. Radiated electromagnetic interference of electronic equipment [J]. Appl. Mech. Mater., 2013, 336-338: 1469
5 Wang J G, He F, Di H. Correlation analysis of magnetic field and conductivity, pH value in electromagnetic restraint of scale formation [J]. CIESC J., 2012, 63: 1468
5 王建国, 何芳, 邸昊. 电磁抑垢实验中磁场作用与电导率及pH值的关联分析 [J]. 化工学报, 2012, 63: 1468
6 Botello-Zubiate M E, Alvarez A, Martı́nez-Villafañe A, et al. Influence of magnetic water treatment on the calcium carbonate phase formation and the electrochemical corrosion behavior of carbon steel [J]. J. Alloy. Compd., 2003, 369: 256
7 Jiang C. Research on magnesium alloy for ships in simulated seawater by magnetic field [J]. Intern. Combust. Engine Parts, 2020, (2): 107
7 姜超. 磁场对船用镁合金在模拟海水中的研究 [J]. 内燃机与配件, 2020, (2): 107
8 Li L, Wang W J, Wang C, et al. Effects of an applied magnetic field on the anodic dissolution of nickel in HNO3+Cl- solution [J]. Electrochem. Commun., 2009, 1: 2109
9 Hinds G, Coey J M D, Lyons M E G. Influence of magnetic forces on electrochemical mass transport [J]. Electrochem. Commun., 2001, 3: 215
10 Xu H Y, Li Y B. Activation behavior of aluminum sacrificial anodes in sea water [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 186
10 徐宏妍, 李延斌. 铝基牺牲阳极在海水中的活化行为 [J]. 中国腐蚀与防护学报, 2008, 28: 186
11 Song F, Ge H H, Fan X F, et al. Effect of magnetized water on corrosion resistance of metals [J]. Corros. Prot., 2015, 36: 362
11 宋飞, 葛红花, 范秀方等. 磁化水对金属耐蚀性能的影响 [J]. 腐蚀与防护, 2015, 36: 362
12 Wang Z D, Wang K. The properties of magnetic conditioned water [J]. J. Inner Mongolia Univ. Sci. Technol., 2016, 35: 284
12 王正德, 王逵. 磁调控对水的性能影响 [J]. 内蒙古科技大学学报, 2016, 35: 284
13 Pang X F, Deng B. Investigation of changes in properties of water under the action of a magnetic field [J]. Sci China Ser. G: Phys., Mech. Astron., 2008, 51: 1621
14 Liu J X, Li J X, Xiao C F. Application of magnetized water treatment in anti-scaling and membrane separation [J]. Technol. Water Treat., 2007, 33(1): 4
14 刘景霞, 李建新, 肖长发. 磁化水处理在防垢和膜分离中的应用 [J]. 水处理技术, 2007, 33(1): 4
15 Shi Y J, Pan Q L, Li M J, et al. Effect of Sc and Zr additions on corrosion behaviour of Al-Zn-Mg-Cu alloys [J]. J. Alloy. Comp., 2014, 612: 42
[1] 吴林涛, 周泽华, 张欣, 杨光恒, 张凯城, 王光宇. 等离子喷涂FeCrMoCBY铁基非晶涂层耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[2] 刘宏宇, 张喜庆, 滕莹雪, 李胜利. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[3] 郎丰军, 黄峰, 徐进桥, 李利巍, 岳江波, 刘静. Mg处理X70级抗酸性海底管线钢 (X70MOS) 成分设计及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[4] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[5] 王东亮, 丁华平, 马云飞, 龚攀, 王新云. 非晶合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.
[6] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[7] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[8] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[9] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[10] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[11] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[12] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[13] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[14] 卫晓阳,杨丽景,吕战鹏,郑必长,宋振纶. 磁场对纯Cu微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 484-494.
[15] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.