Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (6): 529-538    DOI: 10.11902/1005.4537.2019.256
  研究报告 本期目录 | 过刊浏览 |
电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性
刘晓1, 王海2, 朱忠亮1, 李瑞涛1, 陈震宇1, 方旭东3, 徐芳泓3, 张乃强1()
1.华北电力大学 电站设备状态监测与控制教育部重点实验室 北京 102206
2.国电电力发展股份有限公司浙江分公司 杭州 310020
3.太原钢铁 (集团) 有限公司 先进不锈钢材料重点实验室 太原 030003
Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station
LIU Xiao1, WANG Hai2, ZHU Zhongliang1, LI Ruitao1, CHEN Zhenyu1, FANG Xudong3, XU Fanghong3, ZHANG Naiqiang1()
1. Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, North China Electric Power University, Beijing 102206, China
2. Guodian Power Development Co. , Ltd. Zhejiang Branch Company, Hangzhou 310020, China
3. Key Laboratory of Advanced Stainless Steel Materials, Taiyuan Iron and Steel (Group) Co. , Ltd. , Taiyuan 030003, China
全文: PDF(19324 KB)   HTML
摘要: 

采用SEM、XRD、拉曼光谱等检测技术,对奥氏体钢HR3C与Sanicro25在650 ℃/25 MPa和700 ℃/25 MPa的超临界水中的氧化特性进行了研究。结果表明,HR3C和Sanicro25钢在超临界水中的氧化增重速率均随着温度的升高而增大,650 ℃下HR3C与Sanicro25钢的氧化时间指数分别为0.46和0.66,700 ℃下HR3C与Sanicro25钢的氧化时间指数分别为0.42和0.22;两种奥氏体钢表面形成的氧化膜均为双层结构,外层为富Fe结节状氧化物,内层为富Cr致密氧化物;温度相同时,两种奥氏体钢表面形成的氧化膜的物相组成基本相同,且均检测到Cr2O3的存在。此外,700 ℃时,HR3C和Sanicro25钢的外层氧化膜上均观测到了孔洞的存在。HR3C和Sanicro25钢在超临界水中的抗高温蒸汽氧化性能相近。

关键词 奥氏体钢氧化温度超临界水    
Abstract

Due to the good oxidation resistance and high creep strength, austenitic steel is widely used in the construction of supercritical power station boilers, such as boiler super-heater and re-heater tubes, and thus its oxidation resistance in supercritical water is receiving more and more attention. The oxidation characteristics of austenitic steel HR3C and Sanicro25 are studied in supercritical water at 650 ℃/25 MPa and 700°C/25 MPa for 1000 h. The surface morphology, cross-sectional morphology, element distribution and phase composition of the formed oxide scales on the steels are characterized by means of SEM, XRD and Raman spectroscopy. The results show that the formed oxide scales on HR3C and Sanicro25 in supercritical water present a double layered structure, that is to say, the outer layer is composed of Fe-rich nodular oxide, and the inner layer consists of Cr-rich dense oxide. The oxidation rate of austenitic steel HR3C and Sanicro25 in supercritical water increase significantly with the increase in temperature. The curves of oxidation mass gain vs time may be fitted with exponential functions with exponents of 0.46 and 0.66 at 650 ℃, as well as 0.42 and 0.22 at 700 ℃ for HR3C and Sanicro25 respectively. There are small differences in oxidation mass gain between the two austenitic steels. The phase composition of the oxide scales on austenitic steel HR3C and Sanicro25 is basically the same for a given temperature, while Cr2O3 is detected. In addition, pores are observed in the outer layers on the two steels oxidized at 700 ℃, which may act as short circuit for oxygen inward diffusion. The results also show that austenitic steel HR3C and Sanicro25 have similar resistance to high temperature oxidation in supercritical water. The influence of temperature on the formation process of the oxide scales on austenitic steel HR3C and Sanicro25 and the process of the formation of nodular scales are also discussed briefly.

Key wordsaustenitic steel    oxidation    temperature    supercritical water
收稿日期: 2019-12-12     
ZTFLH:  TG178  
基金资助:北京市科技计划(Z181100005218006);北京市自然科学基金(2194085)
通讯作者: 张乃强     E-mail: zhnq@ncepu.edu.cn
Corresponding author: ZHANG Naiqiang     E-mail: zhnq@ncepu.edu.cn
作者简介: 刘晓,女,1994年生,硕士生

引用本文:

刘晓, 王海, 朱忠亮, 李瑞涛, 陈震宇, 方旭东, 徐芳泓, 张乃强. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
Xiao LIU, Hai WANG, Zhongliang ZHU, Ruitao LI, Zhenyu CHEN, Xudong FANG, Fanghong XU, Naiqiang ZHANG. Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station. Journal of Chinese Society for Corrosion and protection, 2020, 40(6): 529-538.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.256      或      https://www.jcscp.org/CN/Y2020/V40/I6/529

SteelCSiMnNiCrCuNbNWPSCoFe
HR3C0.060.391.2420.2924.63---0.490.24---0.0120.001---Bal.
Sanicro250.080.250.5125.522.62.990.440.243.45------1.57Bal.
表1  HR3C和Sanicro25钢的化学成分
图1  HR3C与Sanicro25钢在650和700 ℃超临界水中的氧化增重曲线
图2  HR3C钢在650和700 ℃超临界水中氧化不同时间后的表面形貌
图3  Sanicro25钢在650和700 ℃超临界水中氧化不同时间后的表面形貌
图4  HR3C钢在650和700 ℃的超临界水中氧化1000 h后标记区的EDS结果
Oxide layerElementHR3CSanicro25
Nodular outer oxide layerFe35.1633.21
Cr1.511.21
Compact inner oxide layerFe29.0220.73
Cr20.2615.26
Ni15.2919.03
表2  HR3C与Sanicro25钢650 ℃下形成的氧化膜组成元素含量
图5  Sanicro25钢在650和700 ℃的超临界水中氧化1000 h后标记区的EDS结果
图6  HR3C与Sanicro25钢在650和700 ℃超临界水中氧化不同时间后的形貌图
图7  HR3C与Sanicro25钢在650和700 ℃超临界水中氧化1000 h的XRD谱
图8  HR3C与Sanicro25钢在650和700 ℃超临界水中氧化1000 h后的Raman谱
图9  HR3C与Sanicro25钢在超临界水中氧化1000 h后的横截面形貌及相应的EDS结果
[1] Wu Y S, Zhang M C, Xie X S. The design and research of a new low cobalt-molybdenum Niobium-containing Ni-base superalloy for 700 ℃ advanced ultra-supercritical power plants [J]. Proc. Eng., 2015, 130: 617
doi: 10.1016/j.proeng.2015.12.280
[2] Zhao Z P, Yao M F. Exploring on development ultra-supercritical pressure power genetration units-development of USC units in China as viewed from the materials [J]. Power Eng., 2000, 20: 640
[2] (赵中平, 姚珉芳. 超级超临界机组开发探讨-从材料的成就看我国超级超临界机组的发展 [J]. 动力工程, 2000, 20: 640)
[3] Zhao C Z, Wei S S, Gao Y L, et al. Progress of heat-resistant steel for supercritical and ultra-supercritical steam turbine [J]. J. Iron Steel Res., 2007, 19(9): 1
[3] (赵成志, 魏双胜, 高亚龙等. 超临界与超超临界汽轮机耐热钢的研究进展 [J]. 钢铁研究学报, 2007, 19(9): 1)
[4] Viswanathan R, Sarver J, Tanzosh J M. Boiler materials for ultra-supercritical coal power plants-stearmside oxidation [J]. J. Mater. Proc. Eng. Perform., 2006, 15: 255
[5] Valicek J, Palkova Z, Harnicarova M, et al. Thermal and performance analysis of a gasification boiler and its energy efficiency optimization [J]. Energies, 2017, 10: 1066
doi: 10.3390/en10071066
[6] Wang J B. Analysis and prevention of oxidation peeling of power plant boilers in supercritical units [J]. Shandong Ind. Technol., 2019, (10): 205
[6] (王具宝. 超临界机组电站锅炉氧化皮脱落的分析与防治 [J]. 山东工业技术, 2019, (10): 205)
[7] Viswanathan R, Bakker W. Materials for ultrasupercritical coal power plants-boiler materials: Part 1 [J]. J. Mater. Eng. Perform., 2001, 10: 81
doi: 10.1361/105994901770345394
[8] Li J J, Ma H D, Wang Y G, et al. Investigation on oxidation behavior of super304H and HR3C steel in high temperature steam from a 1000 MW ultra-supercritical coal-fired boiler [J]. Energies, 2019, 12: 521
doi: 10.3390/en12030521
[9] Zhu Z L, Jiang D F, Cao Q, et al. Oxidation behavior of austenitic steel Sanicro25 and TP347HFG in supercritical water [J]. Mater. Corros., 2019, 70: 1087
[10] Rutkowski B, Gil A, Czyrska-Filemonowicz A. Microstructure and chemical composition of the oxide scale formed on the Sanicro 25 steel tubes after fireside corrosion [J]. Corros. Sci., 2016, 102: 373
doi: 10.1016/j.corsci.2015.10.030
[11] Jia J W, Hou L F, Du H Y, et al. Research progress on high temperature oxidation and corrosion behavior of austenitic heat resistant steel Sanicro25 [J]. J. Funct. Mater., 2019, 50: 10057
[11] (贾建文, 侯利锋, 杜华云等. Sanicro25奥氏体耐热钢的高温氧化和腐蚀行为研究进展 [J]. 功能材料, 2019, 50: 10057)
[12] Yang Z, Lu J T, Li Y, et al. Oxidation behavior of two austenitic steels used in 600 ℃ supercritical coal-fired power plants [J]. J. Iron Steel Res., 2017, 29: 221
[12] (杨珍, 鲁金涛, 李琰等. 2种600 ℃超临界锅炉用奥氏体钢的高温氧化行为 [J]. 钢铁研究学报, 2017, 29: 221)
[13] Yang Z, Lu J T, Zhao X B, et al. Study on oxidation behaviours of HR3C in air and pure steam at 750 ℃ [J]. J. Chin. Soc. Power Eng., 2015, 35: 859
[13] (杨珍, 鲁金涛, 赵新宝等. HR3C在750 ℃空气和水蒸气中的高温氧化行为研究 [J]. 动力工程学报, 2015, 35: 859)
[14] Shen C, Du D H, Sun Y, et al. Corrosion behavior of super austenitic stainless steel HR3C in SCW [J]. Corros. Prot., 2014, 35: 662
[14] (沈朝, 杜东海, 孙耀等. 超级奥氏体不锈钢HR3C在SCW中的腐蚀行为 [J]. 腐蚀与防护, 2014, 35: 662)
[15] Zhang N Q, Zhu Z L, Yue G Q, et al. The oxidation behaviour of an austenitic steel in deaerated supercritical water at 600-700℃ [J]. Mater. Charact., 2017, 132: 119
doi: 10.1016/j.matchar.2017.07.023
[16] Zhang N Q, Cao Q, Gui J J, et al. Oxidation and chromia evaporation of austenitic steel TP347HFG in supercritical water [J]. Mater. Corros., 2018, 35: 461
[17] Peng Z F, Ren W, Yang C, et al. Relationship between the evolution of phase parameters of grain boundary M23C6 and embrittlement of HR3C super-heater tubes in service [J]. Acta Metall. Sin., 2015, 51: 1325
doi: 10.11900/0412.1961.2015.00077
[17] (彭志方, 任文, 杨超等. HR3C钢运行过热器管的脆化与晶界M23C6相参量演化的关系 [J]. 金属学报, 2015, 51: 1325)
doi: 10.11900/0412.1961.2015.00077
[18] Zhang N Q, Zhu Z L, Xu H, et al. Oxidation of ferritic and ferritic-martensitic steels in flowing and static supercritical water [J]. Corros. Sci., 2016, 103: 124
doi: 10.1016/j.corsci.2015.10.017
[19] Yang H C, Chai G C, Ma Y H, et al. Oxidation behavior of Sanicro25 heat resistant austenitic steel for boiler tube in pressured steam [J]. Mater. Mech. Eng., 2019, 43(7): 42
[19] (杨华春, 柴国才, 马云海等. 锅炉管用Sanicro25奥氏体耐热钢在带压蒸汽中的氧化行为 [J]. 机械工程材料, 2019, 43(7): 42)
[20] Halvarsson M, Tang J E, Asteman H, et al. Microstructural investigation of the breakdown of the protective oxide scale on a 304 steel in the presence of oxygen and water vapour at 600 ℃ [J]. Corros. Sci., 2006, 48: 2014
doi: 10.1016/j.corsci.2005.08.012
[21] Asteman H, Svensson J E, Johansson L G, et al. Indication of chromium oxide hydroxide evaporation during oxidation of 304L at 873 K in the presence of 10% water vapor [J]. Oxid. Met., 1999, 52: 95
doi: 10.1023/A:1018875024306
[22] Young D J, Pint B A. Chromium volatilization rates from Cr2O3 scales into flowing gases containing water Vapor [J]. Oxid. Met., 2006, 66: 137
doi: 10.1007/s11085-006-9030-1
[23] Zhu Z L, Xu H, Khan H I, et al. Effect of exposure temperature on oxidation of austenitic steel HR3C in supercritical water [J]. Oxid. Met., 2019, 91: 77
doi: 10.1007/s11085-018-9879-9
[24] Stellwag B. The mechanism of oxide film formation on austenitic stainless steels in high temperature water [J]. Corros. Sci., 1998, 40: 337
doi: 10.1016/S0010-938X(97)00140-6
[25] Yin K J, Qiu S Y, Tang R, et al. Characterization of the porosity of the oxide scales on ferritic-martensitic steel P91 and P92 exposed in supercritical water [J]. J. Chin. Soc. Corros. Prot., 2010, 30(1): 1
[25] (尹开锯, 邱绍宇, 唐睿等. 铁素体-马氏体钢P91和P92在超临界水中腐蚀后氧化膜多孔性分析 [J]. 腐蚀与防护, 2010, 30(1): 1)
[26] Wright I G, Dooley R B. A review of the oxidation behaviour of structural alloys in steam [J]. Inter. Mater. Rev., 2010, 55: 129
doi: 10.1179/095066010X12646898728165
[27] Gao W H, Shen C, Zhang L F. Corrosion behavior of HR3C in supercritical water [J]. Atom. Ener. Sci. Technol., 2016, 50: 317
[27] (高文华, 沈朝, 张乐福. HR3C在超临界水中的腐蚀性能研究 [J]. 原子能科学技术, 2016, 50: 317)
[28] Fang Y Y, Zhao J, Li X N. Precipitates in HR3C steel aged at high temperature [J]. Acta Metall. Sin., 2010, 46: 844
doi: 10.3724/SP.J.1037.2010.00037
[28] (方圆圆, 赵杰, 李晓娜. HR3C钢高温时效过程中的析出相 [J]. 金属学报, 2010, 46: 844)
[29] Zhang X. Properties of austenitic heat-resistant steel Sanicro25 for ultra-supercritical boilers [J]. Power Equip., 2015, 29: 439
[29] (张显. 超超临界锅炉用奥氏体耐热钢Sanicro25的性能 [J]. 发电设备, 2015, 29: 439)
[30] Zhang X, Cai W H, Du S M, et al. Research situation and application prospect of Sanicro 25 heat-resistant steel [J]. Mater. Mech. Eng., 2019, 43(1): 1
[30] (张新, 蔡文河, 杜双明等. Sanicro25耐热钢的研究现状及应用前景 [J]. 机械工程材料, 2019, 43(1): 1)
[31] Fulger M, Mihalache M, Ohai D, et al. Analyses of oxide films grown on AISI 304L stainless steel and Incoloy 800HT exposed to supercritical water environment [J]. J. Nucl. Mater., 2011, 415: 147
doi: 10.1016/j.jnucmat.2011.05.007
[32] Robertson J. The mechanism of high temperature aqueous corrosion of stainless steels [J]. Corros. Sci., 1991, 32: 443
[1] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[2] 谢冬柏, 洪昊, 王文, 彭晓, 多树旺. 模拟燃烧环境介质和温度对不锈钢表面氧化物形态的影响研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[3] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[4] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[5] 方旭东, 刘晓, 徐芳泓, 李瑞涛, 朱忠亮, 张乃强. 超超临界电站国产奥氏体钢C-HRA-5在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(3): 266-272.
[6] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[7] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[8] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[9] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[10] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[11] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[12] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[13] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[14] 王毅,张盾. 铋系可见光催化海洋防污材料研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 375-386.
[15] 魏欣欣,张波,马秀良. FeCr15Ni15单晶600 ℃下热生长氧化膜的TEM观察[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.