|
|
电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性 |
刘晓1, 王海2, 朱忠亮1, 李瑞涛1, 陈震宇1, 方旭东3, 徐芳泓3, 张乃强1( ) |
1.华北电力大学 电站设备状态监测与控制教育部重点实验室 北京 102206 2.国电电力发展股份有限公司浙江分公司 杭州 310020 3.太原钢铁 (集团) 有限公司 先进不锈钢材料重点实验室 太原 030003 |
|
Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station |
LIU Xiao1, WANG Hai2, ZHU Zhongliang1, LI Ruitao1, CHEN Zhenyu1, FANG Xudong3, XU Fanghong3, ZHANG Naiqiang1( ) |
1. Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, North China Electric Power University, Beijing 102206, China 2. Guodian Power Development Co. , Ltd. Zhejiang Branch Company, Hangzhou 310020, China 3. Key Laboratory of Advanced Stainless Steel Materials, Taiyuan Iron and Steel (Group) Co. , Ltd. , Taiyuan 030003, China |
引用本文:
刘晓, 王海, 朱忠亮, 李瑞涛, 陈震宇, 方旭东, 徐芳泓, 张乃强. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
Xiao LIU,
Hai WANG,
Zhongliang ZHU,
Ruitao LI,
Zhenyu CHEN,
Xudong FANG,
Fanghong XU,
Naiqiang ZHANG.
Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station. Journal of Chinese Society for Corrosion and protection, 2020, 40(6): 529-538.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2019.256
或
https://www.jcscp.org/CN/Y2020/V40/I6/529
|
[1] |
Wu Y S, Zhang M C, Xie X S. The design and research of a new low cobalt-molybdenum Niobium-containing Ni-base superalloy for 700 ℃ advanced ultra-supercritical power plants [J]. Proc. Eng., 2015, 130: 617
doi: 10.1016/j.proeng.2015.12.280
|
[2] |
Zhao Z P, Yao M F. Exploring on development ultra-supercritical pressure power genetration units-development of USC units in China as viewed from the materials [J]. Power Eng., 2000, 20: 640
|
[2] |
(赵中平, 姚珉芳. 超级超临界机组开发探讨-从材料的成就看我国超级超临界机组的发展 [J]. 动力工程, 2000, 20: 640)
|
[3] |
Zhao C Z, Wei S S, Gao Y L, et al. Progress of heat-resistant steel for supercritical and ultra-supercritical steam turbine [J]. J. Iron Steel Res., 2007, 19(9): 1
|
[3] |
(赵成志, 魏双胜, 高亚龙等. 超临界与超超临界汽轮机耐热钢的研究进展 [J]. 钢铁研究学报, 2007, 19(9): 1)
|
[4] |
Viswanathan R, Sarver J, Tanzosh J M. Boiler materials for ultra-supercritical coal power plants-stearmside oxidation [J]. J. Mater. Proc. Eng. Perform., 2006, 15: 255
|
[5] |
Valicek J, Palkova Z, Harnicarova M, et al. Thermal and performance analysis of a gasification boiler and its energy efficiency optimization [J]. Energies, 2017, 10: 1066
doi: 10.3390/en10071066
|
[6] |
Wang J B. Analysis and prevention of oxidation peeling of power plant boilers in supercritical units [J]. Shandong Ind. Technol., 2019, (10): 205
|
[6] |
(王具宝. 超临界机组电站锅炉氧化皮脱落的分析与防治 [J]. 山东工业技术, 2019, (10): 205)
|
[7] |
Viswanathan R, Bakker W. Materials for ultrasupercritical coal power plants-boiler materials: Part 1 [J]. J. Mater. Eng. Perform., 2001, 10: 81
doi: 10.1361/105994901770345394
|
[8] |
Li J J, Ma H D, Wang Y G, et al. Investigation on oxidation behavior of super304H and HR3C steel in high temperature steam from a 1000 MW ultra-supercritical coal-fired boiler [J]. Energies, 2019, 12: 521
doi: 10.3390/en12030521
|
[9] |
Zhu Z L, Jiang D F, Cao Q, et al. Oxidation behavior of austenitic steel Sanicro25 and TP347HFG in supercritical water [J]. Mater. Corros., 2019, 70: 1087
|
[10] |
Rutkowski B, Gil A, Czyrska-Filemonowicz A. Microstructure and chemical composition of the oxide scale formed on the Sanicro 25 steel tubes after fireside corrosion [J]. Corros. Sci., 2016, 102: 373
doi: 10.1016/j.corsci.2015.10.030
|
[11] |
Jia J W, Hou L F, Du H Y, et al. Research progress on high temperature oxidation and corrosion behavior of austenitic heat resistant steel Sanicro25 [J]. J. Funct. Mater., 2019, 50: 10057
|
[11] |
(贾建文, 侯利锋, 杜华云等. Sanicro25奥氏体耐热钢的高温氧化和腐蚀行为研究进展 [J]. 功能材料, 2019, 50: 10057)
|
[12] |
Yang Z, Lu J T, Li Y, et al. Oxidation behavior of two austenitic steels used in 600 ℃ supercritical coal-fired power plants [J]. J. Iron Steel Res., 2017, 29: 221
|
[12] |
(杨珍, 鲁金涛, 李琰等. 2种600 ℃超临界锅炉用奥氏体钢的高温氧化行为 [J]. 钢铁研究学报, 2017, 29: 221)
|
[13] |
Yang Z, Lu J T, Zhao X B, et al. Study on oxidation behaviours of HR3C in air and pure steam at 750 ℃ [J]. J. Chin. Soc. Power Eng., 2015, 35: 859
|
[13] |
(杨珍, 鲁金涛, 赵新宝等. HR3C在750 ℃空气和水蒸气中的高温氧化行为研究 [J]. 动力工程学报, 2015, 35: 859)
|
[14] |
Shen C, Du D H, Sun Y, et al. Corrosion behavior of super austenitic stainless steel HR3C in SCW [J]. Corros. Prot., 2014, 35: 662
|
[14] |
(沈朝, 杜东海, 孙耀等. 超级奥氏体不锈钢HR3C在SCW中的腐蚀行为 [J]. 腐蚀与防护, 2014, 35: 662)
|
[15] |
Zhang N Q, Zhu Z L, Yue G Q, et al. The oxidation behaviour of an austenitic steel in deaerated supercritical water at 600-700℃ [J]. Mater. Charact., 2017, 132: 119
doi: 10.1016/j.matchar.2017.07.023
|
[16] |
Zhang N Q, Cao Q, Gui J J, et al. Oxidation and chromia evaporation of austenitic steel TP347HFG in supercritical water [J]. Mater. Corros., 2018, 35: 461
|
[17] |
Peng Z F, Ren W, Yang C, et al. Relationship between the evolution of phase parameters of grain boundary M23C6 and embrittlement of HR3C super-heater tubes in service [J]. Acta Metall. Sin., 2015, 51: 1325
doi: 10.11900/0412.1961.2015.00077
|
[17] |
(彭志方, 任文, 杨超等. HR3C钢运行过热器管的脆化与晶界M23C6相参量演化的关系 [J]. 金属学报, 2015, 51: 1325)
doi: 10.11900/0412.1961.2015.00077
|
[18] |
Zhang N Q, Zhu Z L, Xu H, et al. Oxidation of ferritic and ferritic-martensitic steels in flowing and static supercritical water [J]. Corros. Sci., 2016, 103: 124
doi: 10.1016/j.corsci.2015.10.017
|
[19] |
Yang H C, Chai G C, Ma Y H, et al. Oxidation behavior of Sanicro25 heat resistant austenitic steel for boiler tube in pressured steam [J]. Mater. Mech. Eng., 2019, 43(7): 42
|
[19] |
(杨华春, 柴国才, 马云海等. 锅炉管用Sanicro25奥氏体耐热钢在带压蒸汽中的氧化行为 [J]. 机械工程材料, 2019, 43(7): 42)
|
[20] |
Halvarsson M, Tang J E, Asteman H, et al. Microstructural investigation of the breakdown of the protective oxide scale on a 304 steel in the presence of oxygen and water vapour at 600 ℃ [J]. Corros. Sci., 2006, 48: 2014
doi: 10.1016/j.corsci.2005.08.012
|
[21] |
Asteman H, Svensson J E, Johansson L G, et al. Indication of chromium oxide hydroxide evaporation during oxidation of 304L at 873 K in the presence of 10% water vapor [J]. Oxid. Met., 1999, 52: 95
doi: 10.1023/A:1018875024306
|
[22] |
Young D J, Pint B A. Chromium volatilization rates from Cr2O3 scales into flowing gases containing water Vapor [J]. Oxid. Met., 2006, 66: 137
doi: 10.1007/s11085-006-9030-1
|
[23] |
Zhu Z L, Xu H, Khan H I, et al. Effect of exposure temperature on oxidation of austenitic steel HR3C in supercritical water [J]. Oxid. Met., 2019, 91: 77
doi: 10.1007/s11085-018-9879-9
|
[24] |
Stellwag B. The mechanism of oxide film formation on austenitic stainless steels in high temperature water [J]. Corros. Sci., 1998, 40: 337
doi: 10.1016/S0010-938X(97)00140-6
|
[25] |
Yin K J, Qiu S Y, Tang R, et al. Characterization of the porosity of the oxide scales on ferritic-martensitic steel P91 and P92 exposed in supercritical water [J]. J. Chin. Soc. Corros. Prot., 2010, 30(1): 1
|
[25] |
(尹开锯, 邱绍宇, 唐睿等. 铁素体-马氏体钢P91和P92在超临界水中腐蚀后氧化膜多孔性分析 [J]. 腐蚀与防护, 2010, 30(1): 1)
|
[26] |
Wright I G, Dooley R B. A review of the oxidation behaviour of structural alloys in steam [J]. Inter. Mater. Rev., 2010, 55: 129
doi: 10.1179/095066010X12646898728165
|
[27] |
Gao W H, Shen C, Zhang L F. Corrosion behavior of HR3C in supercritical water [J]. Atom. Ener. Sci. Technol., 2016, 50: 317
|
[27] |
(高文华, 沈朝, 张乐福. HR3C在超临界水中的腐蚀性能研究 [J]. 原子能科学技术, 2016, 50: 317)
|
[28] |
Fang Y Y, Zhao J, Li X N. Precipitates in HR3C steel aged at high temperature [J]. Acta Metall. Sin., 2010, 46: 844
doi: 10.3724/SP.J.1037.2010.00037
|
[28] |
(方圆圆, 赵杰, 李晓娜. HR3C钢高温时效过程中的析出相 [J]. 金属学报, 2010, 46: 844)
|
[29] |
Zhang X. Properties of austenitic heat-resistant steel Sanicro25 for ultra-supercritical boilers [J]. Power Equip., 2015, 29: 439
|
[29] |
(张显. 超超临界锅炉用奥氏体耐热钢Sanicro25的性能 [J]. 发电设备, 2015, 29: 439)
|
[30] |
Zhang X, Cai W H, Du S M, et al. Research situation and application prospect of Sanicro 25 heat-resistant steel [J]. Mater. Mech. Eng., 2019, 43(1): 1
|
[30] |
(张新, 蔡文河, 杜双明等. Sanicro25耐热钢的研究现状及应用前景 [J]. 机械工程材料, 2019, 43(1): 1)
|
[31] |
Fulger M, Mihalache M, Ohai D, et al. Analyses of oxide films grown on AISI 304L stainless steel and Incoloy 800HT exposed to supercritical water environment [J]. J. Nucl. Mater., 2011, 415: 147
doi: 10.1016/j.jnucmat.2011.05.007
|
[32] |
Robertson J. The mechanism of high temperature aqueous corrosion of stainless steels [J]. Corros. Sci., 1991, 32: 443
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|