Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (3): 266-272    DOI: 10.11902/1005.4537.2019.083
  研究报告 本期目录 | 过刊浏览 |
超超临界电站国产奥氏体钢C-HRA-5在超临界水中的氧化特性
方旭东1, 刘晓2, 徐芳泓1,3, 李瑞涛2, 朱忠亮2, 张乃强2()
1 太原钢铁 (集团) 有限公司 先进不锈钢材料重点实验室 太原 030003
2 华北电力大学 电站设备状态监测与控制教育部重点实验室 北京 102206
3 山西太钢不锈钢股份有限公司技术中心 太原 030003
Oxidation Behavior in Supercritical Water of Domestic Austenitic Steel C-HRA-5 for Uultra-supercritical Power Stations
FANG Xudong1, LIU Xiao2, XU Fanghong1,3, LI Ruitao2, ZHU Zhongliang2, ZHANG Naiqiang2()
1 Key Laboratory of Advanced Stainless Steel Materials, Taiyuan Iron and Steel (Group) Co. , Ltd. , Taiyuan 030003, China
2 Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, North China Electric Power University, Beijing 102206, China
3 Technology Center of Shanxi Taigang Stainless Steel Co. , Ltd. , Taiyuan 030003, China
全文: PDF(5200 KB)   HTML
摘要: 

研究了奥氏体不锈钢C-HRA-5,在650 ℃/25 MPa和700 ℃/25 MPa超临界水环境中的氧化性能,借助SEM、EDS、XRD及Raman光谱等手段分析了C-HRA-5钢的氧化膜形貌、分布及成分,并探讨了奥氏体钢在超临界水中的氧化机理。结果表明,C-HRA-5钢在超临界水中生成了富Fe/富Cr双层结构氧化膜,氧化膜与基体间存在较薄的内氧化过渡区。随着温度的升高,C-HRA-5钢的氧化增重速率逐渐增大,且700 ℃的氧化增重速率大于650 ℃的氧化增重速率。氧化动力学规律在650与700 ℃时分别呈现近似抛物线和立方规律。

关键词 奥氏体钢氧化超临界水氧化特性    
Abstract

The oxidation behavior of austenitic stainless steel C-HRA-5 was studied in 650 ℃/25 MPa and 700 ℃/25 MPa supercritical water. Then its oxidation products were characterized by means of SEM, EDS, XRD and Raman spectroscopy in terms of the morphology and composition. Results show that a double layered oxide scale rich in Fe and Cr was formed on C-HRA-5 steel after oxidation test in the supercritical water, while a thin internal oxidation transition zone was also formed between the outer oxide scale and the matrix. As the temperature increases, the oxidation weight gain rate of C-HRA-5 increases gradually, and the oxidation weight gain rate at 700 ℃ is greater than the that at 650 ℃. The oxidation kinetics follows approximately parabolic and cubic law at 650 and 700 ℃, respectively.

Key wordsaustenitic steel    oxidation    supercritical water    oxidation behavior
收稿日期: 2019-06-17     
ZTFLH:  TK245  
基金资助:山西省重大专项(2018101014);北京市科技计划(Z181100005218006);北京市自然科学基金(2194085)
通讯作者: 张乃强     E-mail: zhnq@ncepu.edu.cn
Corresponding author: ZHANG Naiqiang     E-mail: zhnq@ncepu.edu.cn
作者简介: 方旭东,男,1975年生,硕士

引用本文:

方旭东, 刘晓, 徐芳泓, 李瑞涛, 朱忠亮, 张乃强. 超超临界电站国产奥氏体钢C-HRA-5在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(3): 266-272.
Xudong FANG, Xiao LIU, Fanghong XU, Ruitao LI, Zhongliang ZHU, Naiqiang ZHANG. Oxidation Behavior in Supercritical Water of Domestic Austenitic Steel C-HRA-5 for Uultra-supercritical Power Stations. Journal of Chinese Society for Corrosion and protection, 2020, 40(3): 266-272.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.083      或      https://www.jcscp.org/CN/Y2020/V40/I3/266

图1  C-HRA-5钢在650 ℃/25 MPa和700 ℃/25 MPa超临界水中的氧化增重曲线
图2  C-HRA-5钢在超临界水中氧化不同时间后氧化物表面形貌
图3  图2标记区的EDS图
图4  C-HRA-5钢在超临界水中氧化不同时间后的氧化物表面形貌
图5  C-HRA-5钢在超临界水中氧化1000 h后的XRD谱
图6  C-HRA-5钢在超临界水中氧化1000 h后的Raman谱
No.Fe2O3Cr2O3FeCr2O4
1740609693*
2650*551*573
3505530478
4380397340
表1  3种Fe-Cr氧化物的Raman光谱特征峰值
图7  C-HRA-5钢在超临界水中氧化1000 h后的横截面形貌及元素分布图
[1] Patel S J, Debarbadillo J J, Baker B A, et al. Nickel base superalloys for next generation coal fired AUSC power plants [J]. Proced. Eng., 2013, 55: 246
[2] Xu H, Yuan J, Zhu Z L, et al. Oxidation behavior of Ferritic-martensitic steel P92 exposed to supercritical water at 600 ℃/25 MPa [J]. J. Chin. Soc. Corros. Prot., 2014, 34(2): 119
[2] (徐鸿, 袁军, 朱忠亮等. 铁素体-马氏体P92钢在600 ℃/25 MPa超临界水中的氧化特性 [J]. 中国腐蚀与防护学报, 2014, 34(2): 119)
[3] Ren S Y, Li B, Zhao G M, et al. Characteristics and application progress of supercritical fluids [J]. Sci. Technol. Prospect, 2016, 26(4): 178
[3] (任松宇, 李斌, 赵光明等. 超临界流体的特性及其应用进展 [J]. 科技展望, 2016, 26(4): 178)
[4] Zhang N Q, Li B R, Bai Y, et al. Oxidation of austenitic steel TP347HFG exposed to supercritical water with different dissolved oxygen concentration [J]. Appl. Mech. Mater., 2011, 148/149: 1179
[5] Yang W D. Reactor Materials Science [M]. Beijing: Atomic Energy Press, 2000: 195
[5] (杨文斗. 反应堆材料学 [M]. 北京: 原子能出版社, 2000: 195)
[6] Fang X D, Li Y, Xia Y, et al. Effect of cold rolling process on microstructure and mechanical properties of C-HRA-5 tubes [J]. Steel Roll., 2017, 34(6): 38
[6] (方旭东, 李阳, 夏焱等. 冷轧工艺对C-HRA-5管材组织及力学性能的影响 [J]. 轧钢, 2017, 34(6): 38)
[7] Luo X, Long C S, Miao Z, et al. Uniform corrosion of stainless steel in supercritical water [A]. Academic exchange meeting of nuclear materials branch of Chinese nuclear society [C]. Jiangyou, 2007: 369
[7] (罗新, 龙冲生, 苗志等. 超临界水中不锈钢的均匀腐蚀研究 [A]. 中国核学会核材料分会2007年度学术交流会论文汇编 [C]. 江油, 2007: 369)
[8] Zhang X. Properties of austenitic heat-resistant steel Sanicro25 for ultra-supercritical boilers [J]. Power Equip., 2015, 29: 439
[8] (张显. 超超临界锅炉用奥氏体耐热钢Sanicr025的性能 [J]. 发电设备, 2015, 29: 439)
[9] Wang Y, Sui X B, Jin S Z. Oxidation characteristic of high nitrogen austenitic stainless steel Cr18Mn18 at high temperature [J]. J. Changchun Univ. Technol., 2017, 38(4): 381
[9] (王宇, 隋小波, 金松哲. Cr18Mn18高氮奥氏体不锈钢高温氧化特性 [J]. 长春工业大学学报, 2017, 38(4): 381)
[10] Otsuka N, Shida Y, Fujikawa H. Internal-external transition for the oxidation of Fe-Cr-Ni austenitic stainless steels in steam [J]. Oxid. Met., 1989, 32: 13
[11] Hansson A N, Danielsen H K, Grumsen F B, et al. Microstructural investigation of the oxide formed on TP 347H FG during long-term steam oxidation [J]. Mater. Corros., 2010, 61: 665
[12] Gómez-Briceño D, Blázquez F, Sáez-Maderuelo A. Oxidation of austenitic and ferritic/martensitic alloys in supercritical water [J]. J. Supercrit. Fluids, 2013, 78: 103
doi: 10.1016/j.supflu.2013.03.014
[13] Behnamian Y, Mostafaei A, Kohandehghan A, et al. A comparative study on the oxidation of austenitic alloys 304 and 304-oxide dispersion strengthened steel in supercritical water at 650 ℃ [J]. J. Supercrit. Fluids, 2017, 119: 245
doi: 10.1016/j.supflu.2016.10.002
[14] Was G S, Teysseyre S, Jiao Z. Corrosion of austenitic alloys in supercritical water [J]. Corrosion, 2006, 62: 989
[15] Wright I G, Pint B A. An assessment of the high temperature oxidation behavior of Fe-Cr steels in water vapor and steam [A]. CORROSION 2002 [C]. Denver, Colorado, 2002
[16] Wang J B. Oxide behavor research of Super304H for (Ultra) supercritical boiler [D]. Harbin: Harbin Institute of Technology, 2016
[16] 王江滨. 超(超) 临界锅炉Super304H不锈钢氧化特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016)
[17] Ouyang D G, Jiang Y H, Luo A Z. The development in oxidation nature of steel [J]. Ind. Heat., 2007, 36(6): 8
[17] (欧阳德刚, 蒋扬虎, 罗安智. 钢氧化特性的研究动态 [J]. 工业加热, 2007, 36(6): 8)
[18] Qiao Y X, Wang S, Gao Y J, et al. Corrosion behavior of ferritic-martensitic steel P92 in supercritical water [J]. J. Iron Steel Res., 2016, 28(8): 57
doi: 10.13228/j.boyuan.issn1001-0963.20150397
[18] (乔岩欣, 王硕, 高宇键等. 铁素体-马氏体钢P92在超临界水中的腐蚀行为 [J]. 钢铁研究学报, 2016, 28(8): 57)
[19] Yin K J, Qiu S Y, Rui T, et al. Corrosion behavior of ferritic/martensitic steel P92 in supercritical water [J]. J. Supercrit. Fluids, 2009, 50: 235
doi: 10.1016/j.supflu.2009.06.019
[20] Laverde D, Gómez-Acebo T, Castro F. Continuous and cyclic oxidation of T91 ferritic steel under steam [J]. Corros. Sci., 2004, 46: 613
doi: 10.1016/S0010-938X(03)00173-2
[21] Chen Y, Sridharan K, Allen T. Corrosion behavior of ferritic-martensitic steel T91 in supercritical water [J]. Corros. Sci., 2006, 48: 2843
[22] Ehlers J, Young D J, Smaardijk E J, et al. Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments [J]. Corros. Sci., 2006, 48: 3428
[23] Ampornrat P. Determination of oxidation mechanisms of ferritic-martensitic alloys in supercritical water [D]. Michigan, USA: University of Michigan, 2011
[24] Zhu F W, Zhang L F, Qiao P P, et al. Corrosion behaviors of candidate materials for supercritical-cooled water reactor [J]. Nucl. Power Eng., 2009, 30(5): 62
[24] (朱发文, 张乐福, 乔培鹏等. 超临界水堆候选材料的腐蚀特性研究 [J]. 核动力工程, 2009, 30(5): 62)
[25] Stellwag B. The mechanism of oxide film formation on austenitic stainless steels in high temperature water [J]. Corros. Sci., 1998, 40: 337
doi: 10.1016/S0010-938X(97)00140-6
[26] Chang K H, Huang J H, Yan C B, et al. Corrosion behavior of Alloy 625 in supercritical water environments [J]. Prog. Nucl. Energy, 2012, 57: 20
[27] Zhang Q, Tang R, Yin K J, et al. Corrosion behavior of Hastelloy C-276 in supercritical water [J]. Corros. Sci., 2009, 51: 2092
[28] Rodriguez D, Merwin A, Karmiol Z, et al. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water [J]. Appl. Surf. Sci., 2017, 404: 443
[29] Zhu Z L, Xu H, Khan H I, et al. Effect of exposure temperature on oxidation of austenitic steel HR3C in supercritical water [J]. Oxid. Met., 2019, 91: 77
doi: 10.1007/s11085-018-9879-9
[30] Halvarsson M, Tang J E, Asteman H, et al. Microstructural investigation of the breakdown of the protective oxide scale on a 304 steel in the presence of oxygen and water vapour at 600 ℃ [J]. Corros. Sci., 2006, 48: 2014
doi: 10.1016/j.corsci.2005.08.012
[31] Asteman H, Svensson J E, Norell M, et al. Influence of water vapor and flow rate on the high-temperature oxidation of 304L; effect of chromium oxide hydroxide evaporation [J]. Oxid. Met., 2000, 54: 11
doi: 10.1023/A:1004642310974
[1] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[2] 刘晓, 王海, 朱忠亮, 李瑞涛, 陈震宇, 方旭东, 徐芳泓, 张乃强. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[3] 谢冬柏, 洪昊, 王文, 彭晓, 多树旺. 模拟燃烧环境介质和温度对不锈钢表面氧化物形态的影响研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[4] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[5] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[6] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[7] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[8] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[9] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[10] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[11] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[12] 王毅,张盾. 铋系可见光催化海洋防污材料研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 375-386.
[13] 魏欣欣,张波,马秀良. FeCr15Ni15单晶600 ℃下热生长氧化膜的TEM观察[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[14] 肖金涛,陈妍,邢明秀,鞠鹏飞,孟引根,王芳. 工艺参数对2195铝锂合金阳极氧化膜的耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[15] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.