Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (6): 539-544    DOI: 10.11902/1005.4537.2019.110
  研究报告 本期目录 | 过刊浏览 |
磷化处理对核主泵螺栓断裂行为的影响
赵东杨1, 周宇1(), 王冬颖2, 那铎1
1.中国科学院金属研究所 沈阳 110016
2.沈阳鼓风机集团核电泵业有限公司 沈阳 110869
Effect of Phosphating on Hydrogen Embrittlement of SA-540 B23 Steel for Nuclear Reactor Coolant Pump Bolt
ZHAO Dongyang1, ZHOU Yu1(), WANG Dongying2, NA Duo1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. Nuclear Division, Shenyang Blower Works Group Co. , Ltd. , Shenyang 110869, China
全文: PDF(7644 KB)   HTML
摘要: 

采用SEM,氢含量分析仪和电化学充氢慢应变速率拉伸方法,研究了磷化处理及氢含量对核主泵用国产SA-540 B23主螺栓断裂行为的影响。结果表明,磷化处理对B23螺栓材料的断裂性能 (慢应变速率拉伸及断裂韧性) 没有影响。磷化处理后,H主要分布在磷化层中,而非基体内部。B23螺栓材料在电化学充氢环境下表现出明显的氢脆敏感性,断裂模式为沿晶开裂。

关键词 B23螺栓磷化处理氢脆断裂韧性    
Abstract

The effect of phosphating on the fracture behavior of a domestic SA-540 B23 steel used for nuclear reactor coolant pump bolt is studied by scanning electron microscope (SEM), hydrogen content analysis and in-situ hydrogen charging slow strain rate test (SSRT). The result shows that phosphating treatment has no effect on the fracture properties of B23 steel. Hydrogen content analysis shows that hydrogen is mainly distributed in the phosphate coating instead of the substrate. Hydrogen embrittlement tests show that B23 has obvious hydrogen embrittlement susceptibility under the attack of hydrogen, and the fracture feature is intergranular cracking.

Key wordsB23 bolt    phosphate    hydrogen embrittlement    fracture toughness
收稿日期: 2019-07-19     
ZTFLH:  TG178  
通讯作者: 周宇     E-mail: yzhou@imr.ac.cn
Corresponding author: ZHOU Yu     E-mail: yzhou@imr.ac.cn
作者简介: 赵东杨,男,1989年生

引用本文:

赵东杨, 周宇, 王冬颖, 那铎. 磷化处理对核主泵螺栓断裂行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
Dongyang ZHAO, Yu ZHOU, Dongying WANG, Duo NA. Effect of Phosphating on Hydrogen Embrittlement of SA-540 B23 Steel for Nuclear Reactor Coolant Pump Bolt. Journal of Chinese Society for Corrosion and protection, 2020, 40(6): 539-544.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.110      或      https://www.jcscp.org/CN/Y2020/V40/I6/539

MaterialCSiMnSPCrNiMoFe
Domestic0.380.240.680.0030.0121.070.020.21Bal.
ASME0.37~0.440.15~0.350.15~0.350.0250.0250.65~0.951.55~20.2~0.3Bal.
表1  B23材料化学成分
图1  拉伸试样和断裂韧性试样尺寸图以及断裂韧性KIC与试样厚度B的关系图
图2  B23材料的显微组织照片
图3  B23材料磷化前与磷化后在空气中慢应变速率拉伸曲线对比
图4  B23材料在1 mol/L的NaCl水溶液中 (10 mA/cm2) 电化学充氢下慢应变速率拉伸曲线
图5  B23材料在室温空气中的慢拉伸断口形貌
图6  B23材料在10 mA/cm2电流密度阴极充氢条件下慢拉伸断口形貌
Measurement valueBefore phosphating / mg·kg-1After phosphating / mg·kg-1After removing the phosphating layer / mg·kg-1
10.8044.000.40
20.8049.000.42
30.9048.000.39
Average value0.8347.000.40
表2  B23材料磷化前后及去除磷化层后的氢含量
图7  B23材料磷化前断裂韧性测试P-V和K-P曲线
图8  B23材料磷化后断裂韧性测试P-V和K-P曲线
[1] Yang J W, Wang X D, Liu L. Research and development on pump shell casting of CAP1400 nuclear main pump [J]. Found. Technol., 2018, 39: 812
[1] (杨继伟, 王雪东, 刘连. CAP1400核主泵泵壳铸件的研发 [J]. 铸造技术, 2018, 39: 812)
[2] Xue X H, Wang Z Y, Li T Y, et al. Microstructure of pressure boundary welded joint of CAP1400 steam generator [J]. Mater. Mech. Eng., 2018, 42(2): 22
[2] (薛小怀, 王志颖, 李天宇等. CAP1400蒸汽发生器压力边界焊接接头的显微组织 [J]. 机械工程材料, 2018, 42(2): 22)
[3] Zheng G M. From AP1000 to CAP1400, self-reliant process of China’s third generation nuclear power [J]. China Nucl. Power, 2018, 11: 41
[3] (郑光明. 从AP1000到CAP1400, 我国先进三代非能动核电技术自主化历程 [J]. 中国核电, 2018, 11: 41)
[4] Ni X P. Occurrence and prevention of hydrogen embrittlement in surface treatment [J]. Plat. Finish., 2010, 32(4): 27
[4] (倪小平. 表面处理过程中氢脆的产生与预防 [J]. 电镀与精饰, 2010, 32(4): 27)
[5] Li L Q, Cao Y X, Tang Q P. Study on phosphating process for iron and steel parts at room temperature [J]. Electroplat. Pollut. Control, 2019, 39(3): 49
[5] (李立群, 曹永香, 唐庆平. 钢铁零件常温磷化工艺的研究 [J]. 电镀与环保, 2019, 39(3): 49)
[6] Miao Y M, Li X M. Application of manganese-based phosphating in surface anti-rust process [J]. Mod. Paint Finish., 2017, 20(7): 58
[6] (苗彦民, 李晓民. 锰系磷化在表面防锈工艺中的应用 [J]. 现代涂料与涂装, 2017, 20(7): 58)
[7] Ma D W, Shi Q Y, Yuan G M, et al. Effects of process parameters on morphology and corrosion resistance of manganese phosphating film on 38MnVS steel [J]. Surf. Technol., 2017, 46(8): 221
[7] (马冬威, 史秋月, 袁国民等. 工艺参数对38MnVS钢锰系磷化膜表面形貌和耐蚀性的影响 [J]. 表面技术, 2017, 46(8): 221)
[8] Ju G L. Fracture reason analysis for 35CrMoA bolt [J]. Hot Work. Technol., 2012, 41(20): 223
[8] (巨根利. 35CrMoA螺栓断裂原因分析 [J]. 加工工艺, 2012, 41(20): 223)
[9] Lynch S P. Hydrogen embrittlement (HE) phenomena and mechanisms [A].Raja V S, Shoji T. Corrosion Cracking [M]. Oxford: Woodhead Publishing, 2011: 90)
[10] Li G Y, Niu L Y, Lian J S, et al. A black phosphate coating for C1008 steel [J]. Surf. Coat. Technol., 2004, 176: 215
doi: 10.1016/S0257-8972(03)00736-9
[11] Oriani R A. A mechanistic theory of hydrogen embrittlement of steels [J]. Berich. Bunsen. Gesell., 1972, 76: 848
[12] Beachem C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”) [J]. Metall. Mater. Trans., 1972, 3B: 441
[13] Lynch S P. Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process [J]. Acta Metall., 1988, 36: 2639
doi: 10.1016/0001-6160(88)90113-7
[14] Lynch S P. Mechanisms and kinetics of environmentally assisted cracking: Current status, issues, and suggestions for further work [J]. Metall. Mater. Trans., 2013, 44A: 1209
[15] Nagao A, Smith C D, Dadfarnia M, et al. The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel [J]. Acta Mater., 2012, 60: 5182
doi: 10.1016/j.actamat.2012.06.040
[16] Djukic M B, Zeravcic V S, Bakic G M, et al. Hydrogen damage of steels: A case study and hydrogen embrittlement model [J]. Eng. Fail. Anal., 2015, 58: 485
doi: 10.1016/j.engfailanal.2015.05.017
[17] Jiang Y F, Zhang B, Wang D Y, et al. Hydrogen-assisted fracture features of a high strength ferrite-pearlite steel [J]. J. Mater. Sci. Technol., 2019, 35: 1081
[18] Nagao A, Smith C D, Dadfarnia M, et al. The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel [J]. Acta Mater., 2012, 60: 5182
doi: 10.1016/j.actamat.2012.06.040
[19] Wang G, Yan Y, Li J X, et al. Hydrogen embrittlement assessment of ultra-high strength steel 30CrMnSiNi2 [J]. Corros. Sci., 2013, 77: 273
doi: 10.1016/j.corsci.2013.08.013
[1] 张琦超, 黄彦良, 许勇, 杨丹, 路东柱. 高放射性核废料钛储罐深地质环境中氢吸收及氢脆研究进展[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[2] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[3] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[4] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[5] 童海生,孙彦辉,宿彦京,庞晓露,高克玮. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[6] 柯书忠, 刘静, 黄峰, 王贞, 毕云杰. 预应变对DP600钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 424-430.
[7] 李腾, 金伟良, 许晨, 毛江鸿. 电化学修复过程中钢筋析氢稳态临界电流密度测定实验方法[J]. 中国腐蚀与防护学报, 2017, 37(4): 382-388.
[8] 王廷勇,马兰英,汪相辰,张海兵,陈凯,闫永贵. 某核电站凝汽器在海水中阴极保护参数的研究及应用[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[9] 张体明, 赵卫民, 郭望, 王勇. 阴极保护下X65钢在模拟海水中的氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2014, 34(4): 315-320.
[10] 郝文魁, 刘智勇, 张新, 杜翠薇, 李晓刚, 刘翔. H2S浓度对35CrMo钢应力腐蚀开裂的影响[J]. 中国腐蚀与防护学报, 2013, 33(5): 357-362.
[11] 李成杰,杜敏. 深海钢铁材料的阴极保护技术研究及发展[J]. 中国腐蚀与防护学报, 2013, 33(1): 10-16.
[12] 林召强,马力,闫永贵. 阴极极化对高强度船体结构钢焊缝氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2011, 31(1): 46-50.
[13] 张宇,宋仁国,唐普洪. 7075铝合金氢脆敏感性与Mg-H相互作用[J]. 中国腐蚀与防护学报, 2010, 30(5): 364-368.
[14] 常娥;闫永贵;李庆芬;马力. 阴极极化对921A钢海水中氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2010, 30(1): 83-88.
[15] 郑传波 黄彦良 霍春勇 于青 朱永艳. API X56钢在含H2S的海洋大气中的应力腐蚀开裂[J]. 中国腐蚀与防护学报, 2009, 29(1): 19-23.