Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (3): 223-229    DOI: 10.11902/1005.4537.2019.055
  综合评述 本期目录 | 过刊浏览 |
电化学噪声原位监测应力腐蚀开裂的研究现状与进展
张震1,2, 吴欣强1(), 谭季波1
1 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 辽宁省核电材料安全与评价技术重点实验室 沈阳 110016
2 中国科学技术大学材料科学与工程学院 合肥 230026
Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking
ZHANG Zhen1,2, WU Xinqiang1(), TAN Jibo1
1 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
全文: PDF(592 KB)   HTML
摘要: 

以评价腐蚀机制为背景介绍了电化学噪声信号处理方法的发展现状,综述了应力腐蚀开裂过程中的电化学噪声信号测试和解析方法,讨论了电化学噪声技术原位监测高温高压水应力腐蚀开裂的研究状况及存在的主要问题。

关键词 电化学噪声腐蚀机制信号处理应力腐蚀开裂高温水    
Abstract

The development of electrochemical noise signal processing methods for investigation of corrosion mechanisms was introduced. The measurement and interpretation of the electrochemical noise occurred during stress corrosion cracking were reviewed. The applicability and existing problems related with the electrochemical noise technique for in situ monitoring of stress corrosion cracking in high-temperature and high-pressure water were also discussed.

Key wordselectrochemical noise    corrosion mechanism    signal processing    stress corrosion cracking    high temperature water
收稿日期: 2019-05-01     
ZTFLH:  TG172  
基金资助:国家自然科学基金(51671201);国家自然科学基金(51371174);国家科技重大专项专题(2017ZX06002003-004-002);中国科学院院重点部署项目(ZDRW-CN-2017-1);中国科学院金属研究所创新基金(SCJJ-2013-ZD-02)
通讯作者: 吴欣强     E-mail: xqwu@imr.ac.cn
Corresponding author: WU Xinqiang     E-mail: xqwu@imr.ac.cn
作者简介: 张震,男,1991年生,博士生

引用本文:

张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
Zhen ZHANG, Xinqiang WU, Jibo TAN. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking. Journal of Chinese Society for Corrosion and protection, 2020, 40(3): 223-229.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.055      或      https://www.jcscp.org/CN/Y2020/V40/I3/223

[1] Zhang T, Yang Y G, Shao Y W, et al. Advances of the analysis methodology for electrochemical noise [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 1
[1] (张涛, 杨延格, 邵亚薇等. 电化学噪声分析方法的研究进展 [J]. 中国腐蚀与防护学报, 2014, 34: 1)
[2] Zhang J Q, Zhang Z, Wang J M, et al. Analysis and application of electrochemical noise— I. Theory of electrochemical noise analysis [J]. J. Chin. Soc. Corros. Prot., 2001, 21: 310
[2] (张鉴清, 张昭, 王建明等. 电化学噪声的分析与应用— I. 电化学噪声的分析原理 [J]. 中国腐蚀与防护学报, 2001, 21: 310)
[3] Xia D H, Song S Z, Behnamian Y. Detection of corrosion degradation using electrochemical noise (EN): Review of signal processing methods for identifying corrosion forms [J]. Corros. Eng. Sci. Technol., 2016, 51: 527
[4] Jamali S S, Mills D J. A critical review of electrochemical noise measurement as a tool for evaluation of organic coatings [J]. Prog. Org. Coat., 2016, 95: 26
[5] Ma C, Wang Z Q, Behnamian Y, et al. Measuring atmospheric corrosion with electrochemical noise: A review of contemporary methods [J]. Measurement, 2019, 138: 54
doi: 10.1016/j.measurement.2019.02.027
[6] Bahrami M J, Shahidi M, Hosseini S M A. Comparison of electrochemical current noise signals arising from symmetrical and asymmetrical electrodes made of Al alloys at different pH values using statistical and wavelet analysis. Part I: Neutral and acidic solutions [J]. Electrochim. Acta, 2014, 148: 127
doi: 10.1016/j.electacta.2014.10.031
[7] Cheng Y F, Luo J L. Electronic structure and pitting susceptibility of passive film on carbon steel [J]. Electrochim. Acta, 1999, 44: 2947
doi: 10.1016/S0013-4686(99)00011-0
[8] Sanchez-Amaya J M, Cottis R A, Botana F J. Shot noise and statistical parameters for the estimation of corrosion mechanisms [J]. Corros. Sci., 2005, 47: 3280
[9] Cheng Y F, Luo J L, Wilmott M. Spectral analysis of electrochemical noise with different transient shapes [J]. Electrochim. Acta, 2000, 45: 1763
[10] Cottis R A, Homborg A M, Mol J M C. The relationship between spectral and wavelet techniques for noise analysis [J]. Electrochim. Acta, 2016, 202: 277
[11] Shi Y Y, Zhang Z, Cao F H, et al. Dimensional analysis applied to pitting corrosion measurements [J]. Electrochim. Acta, 2008, 53: 2688
[12] Bertocci U, Gabrielli C, Huet F, et al. Noise resistance applied to corrosion measurements: 1. Theoretical analysis [J]. J. Electrochem. Soc., 1997, 144: 31
[13] Aballe A, Bethencourt M, Botana F J, et al. Using wavelets transform in the analysis of electrochemical noise data [J]. Electrochim. Acta, 1999, 44: 4805
[14] Moshrefi R, Mahjani M G, Jafarian M. Application of wavelet entropy in analysis of electrochemical noise for corrosion type identification [J]. Electrochem. Commun., 2014, 48: 49
doi: 10.1016/j.elecom.2014.08.005
[15] Homborg A M, Tinga T, Zhang X, et al. Transient analysis through Hilbert spectra of electrochemical noise signals for the identification of localized corrosion of stainless steel [J]. Electrochim. Acta, 2013, 104: 84
[16] Homborg A M, Morales C F L, Tinga T, et al. Detection of microbiologically influenced corrosion by electrochemical noise transients [J]. Electrochim. Acta, 2014, 136: 223
doi: 10.1016/j.electacta.2014.05.102
[17] Xia D H, Song S Z, Wang J H, et al. Determination of corrosion types from electrochemical noise by phase space reconstruction theory [J]. Electrochim. Commun., 2012, 15: 88
doi: 10.1016/j.elecom.2011.11.032
[18] Hou Y, Aldrich C, Lepkova K, et al. Monitoring of carbon steel corrosion by use of electrochemical noise and recurrence quantification analysis [J]. Corros. Sci., 2016, 112: 63
doi: 10.1016/j.corsci.2016.07.009
[19] Cazares-Ibáñez E, Vázquez-Coutiño G A, García-Ochoa E. Application of recurrence plots as a new tool in the analysis of electrochemical oscillations of copper [J]. J. Electroanal. Chem., 2005, 583: 17
[20] Yang Y G, Zhang T, Shao Y W, et al. Effect of hydrostatic pressure on the corrosion behaviour of Ni-Cr-Mo-V high strength steel [J]. Corros. Sci., 2010, 52: 2697
doi: 10.1016/j.corsci.2010.04.025
[21] Zhang Z, Wu X Q. Correlated pitting stages of 304 stainless steel with recurrence quantification analysis of electrochemical noise [J]. Mater. Corros., 2019, 70: 197
[22] Chen J F, Bogaerts W F. Electrochemical emission spectroscopy for monitoring uniform and localized corrosion [J]. Corrosion, 1996, 52: 753
doi: 10.5006/1.3292068
[23] Wang C, Cai Y Z, Ye C Q, et al. In-situ monitoring of the localized corrosion of 304 stainless steel in FeCl3 solution using a joint electrochemical noise and scanning reference electrode technique [J]. Electrochem. Commun., 2018, 90: 11
[24] Du G, Li J, Wang W K, et al. Detection and characterization of stress-corrosion cracking on 304 stainless steel by electrochemical noise and acoustic emission techniques [J]. Corros. Sci., 2011, 53: 2918
[25] Cottis R A. The significance of electrochemical noise measurements on asymmetric electrodes [J]. Electrochim. Acta, 2007, 52: 7585
[26] Bautistia A, Huet F. Noise resistance applied to corrosion measurements: IV. Asymmetric coated electrodes [J]. J. Electrochem. Soc., 1999, 146: 1730
doi: 10.1149/1.1391834
[27] Kovač J, Leban M, Legat A. Detection of SCC on prestressing steel wire by the simultaneous use of electrochemical noise and acoustic emission measurements [J]. Electrochim. Acta, 2007, 52: 7607
doi: 10.1016/j.electacta.2006.12.085
[28] Kovac J, Alaux C, Marrow T J, et al. Correlations of electrochemical noise, acoustic emission and complementary monitoring techniques during intergranular stress-corrosion cracking of austenitic stainless steel [J]. Corros. Sci., 2010, 52: 2015
doi: 10.1016/j.corsci.2010.02.035
[29] Bolivar J, Frégonèse M, Réthoré J, et al. Evaluation of multiple stress corrosion crack interactions by in-situ Digital Image Correlation [J]. Corros. Sci., 2017, 128: 120
doi: 10.1016/j.corsci.2017.09.001
[30] Gomez-Duran M, Macdonald D D. Stress corrosion cracking of sensitized type 304 stainless steel in thiosulfate solution: I. Fate of the coupling current [J]. Corros. Sci., 2003, 45: 1455
doi: 10.1016/S0010-938X(02)00219-6
[31] Lentka L, Smulko J. Methods of trend removal in electrochemical noise data-Overview [J]. Measurement, 2019, 131: 569
doi: 10.1016/j.measurement.2018.08.023
[32] Luo J L, Qiao L J. Application and evaluation of processing methods of electrochemical noise generated during stress corrosion cracking [J]. Corrosion, 1999, 55: 870
doi: 10.5006/1.3284043
[33] Cottis R A, Loto C A. Electrochemical noise generation during SCC of a high-strength carbon steel [J]. Corrosion, 1990, 46: 12
doi: 10.5006/1.3585059
[34] Loto C A, Cottis R A. Electrochemical noise generation during stress corrosion cracking of the high-strength aluminum AA 7075-T6 alloy [J]. Corrosion, 1989, 45: 136
doi: 10.5006/1.3577831
[35] Loto C A, Cottis R A. Electrochemical noise generation during stress corrosion cracking of alpha-brass [J]. Corrosion, 1987, 43: 499
doi: 10.5006/1.3583893
[36] Watanabe Y, Kondo T. Current and potential fluctuation characteristics in intergranular stress corrosion cracking processes of stainless steels [J]. Corrosion, 2000, 56: 1250
doi: 10.5006/1.3280513
[37] Leban M, Ž Bajt, Legat A. Detection and differentiation between cracking processes based on electrochemical and mechanical measurements [J]. Electrochim. Acta, 2004, 49: 2795
doi: 10.1016/j.electacta.2004.01.042
[38] Breimesser M, Ritter S, Seifert H P, et al. Application of electrochemical noise to monitor stress corrosion cracking of stainless steel in tetrathionate solution under constant load [J]. Corros. Sci., 2012, 63: 129
doi: 10.1016/j.corsci.2012.05.017
[39] Anita T, Pujar M G, Shaikh H, et al. Assessment of stress corrosion crack initiation and propagation in AISI type 316 stainless steel by electrochemical noise technique [J]. Corros. Sci., 2006, 48: 2689
doi: 10.1016/j.corsci.2005.09.007
[40] Calabrese L, Bonaccorsi L, Galeano M, et al. Identification of damage evolution during SCC on 17-4 PH stainless steel by combining electrochemical noise and acoustic emission techniques [J]. Corros. Sci., 2015, 98: 573
doi: 10.1016/j.corsci.2015.05.063
[41] Acuña-González N, García-Ochoa E, González-Sánchez J. Assessment of the dynamics of corrosion fatigue crack initiation applying recurrence plots to the analysis of electrochemical noise data [J]. Int. J. Fatigue, 2008, 30: 1211
[42] Stewart J, Wells D B, Scoot P M, et al. Electrochemical noise measurements of stress corrosion cracking of sensitized austenitic stainless steel in high-purity oxygenated water at 288℃ [J]. Corros. Sci., 1992, 33: 73
doi: 10.1016/0010-938X(92)90018-X
[43] Manahan M P, MacDonald D D, Peterson A J. Determination of the fate of the current in the stress-corrosion cracking of sensitized type 304 SS in high temperature aqueous systems [J]. Corros. Sci., 1995, 37: 189
doi: 10.1016/0010-938X(94)00129-T
[44] Watanabe Y, Kain V, Kobayashi M. Electrochemical transients observed during slow strain rate test of alloy 600 in borated and lithiated high temperature water [J]. JSME Int. J. Ser. A, 2002, 45: 476
[45] Arganis-Juarez C R, Malo J M, Uruchurtu J. Electrochemical noise measurements of stainless steel in high temperature water [J]. Nucl. Eng. Des., 2007, 237: 2283
doi: 10.1016/j.nucengdes.2007.04.010
[46] Kim S W, Kim H P. Electrochemical noise analysis of PbSCC of Alloy 600 SG tube in caustic environments at high temperature [J]. Corros. Sci., 2009, 51: 191
doi: 10.1016/j.corsci.2008.10.014
[47] Ritter S, Seifert H P. Influence of reference electrode distance and hydrogen content on electrochemical potential noise during SCC in high purity, high temperature water [J]. Corros. Eng. Sci. Technol., 2013, 48: 199
doi: 10.1179/1743278212Y.0000000061
[48] Ritter S, Seifert H P. Detection of SCC initiation in austenitic stainless steel by electrochemical noise measurements [J]. Mater. Corros., 2013, 64: 683
[49] Hou Y, Aldrich C, Lepkova K, et al. Analysis of electrochemical noise data by use of recurrence quantification analysis and machine learning methods [J]. Electrochim. Acta, 2017, 256: 337
doi: 10.1016/j.electacta.2017.09.169
[1] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[4] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[5] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[6] 安朋亮, 梁平, 任建民, 史艳华, 刘峰, 陈思瑶. 高氮奥氏体不锈钢点蚀行为的电化学噪声特征[J]. 中国腐蚀与防护学报, 2018, 38(1): 26-32.
[7] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[8] 陈洁净,鞠虹,孙灿,李霞,刘雲飞. 电化学测试技术在垢下腐蚀中的应用[J]. 中国腐蚀与防护学报, 2017, 37(3): 207-215.
[9] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[10] 罗金恒,胥聪敏,杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[11] 邓平,孙晨,彭群家,韩恩厚,柯伟. 堆芯结构材料辐照促进应力腐蚀开裂研究现状[J]. 中国腐蚀与防护学报, 2015, 35(6): 479-487.
[12] 郭跃岭,韩恩厚,王俭秋. 锻后热处理对核级316LN不锈钢在沸腾MgCl2溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.
[13] 张志明,彭青娇,王俭秋,韩恩厚,柯伟. 核用锻造态316L不锈钢在330 ℃碱溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
[14] 史显波, 王威, 严伟, 单以银, 杨柯. M/A组元对高强度管线钢抗H2S性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 129-136.
[15] 海正银, 王辉, 辛长胜, 蔡敏, 秦博, 陈童. 加锌对690合金在高温水中形成的氧化膜的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 532-536.