|
|
核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为 |
朱若林1,2, 张利涛1, 王俭秋1( ), 张志明1, 韩恩厚1 |
1 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016 2 中核武汉核电运行技术股份有限公司 武汉 430223 |
|
Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water |
Ruolin ZHU1,2, Litao ZHANG1, Jianqiu WANG1( ), Zhiming ZHANG1, En-Hou HAN1 |
1 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 China Nuclear Power Operation Technology Corporation, LTD, Wuhan 430223, China |
引用本文:
朱若林, 张利涛, 王俭秋, 张志明, 韩恩厚. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
Ruolin ZHU,
Litao ZHANG,
Jianqiu WANG,
Zhiming ZHANG,
En-Hou HAN.
Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water. Journal of Chinese Society for Corrosion and protection, 2018, 38(1): 54-61.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2017.006
或
https://www.jcscp.org/CN/Y2018/V38/I1/54
|
[1] | Zhang L T.Stress corrosion crack growth behavior of nuclear grade 316L stainless steel in pressurized high temperature water [D]. Shenyang: Institute of Metal Research,Chinese Academy of Sciences, 2014(张利涛. 核级316L不锈钢在高温高压水环境中的应力腐蚀裂纹扩展行为研究 [D]. 沈阳: 中国科学院金属研究所, 2014) | [2] | Arioka K, Yamada T, Terachi T, et al.Cold work and temperature dependence of stress corrosion crack growth of austenitic stainless steels in hydrogenated and oxygenated high-temperature water[J]. Corrosion, 2007, 63: 1114 | [3] | Zhang L T, Wang J Q.Effect of temperature and loading mode on environmentally assisted crack growth of a forged 316L SS in oxygenated high-temperature water[J]. Corros. Sci., 2014, 87: 278 | [4] | Peng Q J, Zhang Z M, Wang J Q, et al.Influence of dissolved hydrogen on oxidation of stainless steel 316L in simulated PWR primary water[J]. J. Chin. Soc. Corros. Prot., 2012, 32: 217(彭青姣, 张志明, 王俭秋等. 溶解氢对316L不锈钢在模拟压水堆一回路水中氧化行为的影响[J]. 中国腐蚀与防护学报, 2012, 32: 217) | [5] | Sun H, Wu X Q, Han E-H, et al.Effects of pH and dissolved oxygen on electrochemical behavior and oxide films of 304SS in borated and lithiated high temperature water[J]. Corros. Sci., 2012, 59: 334 | [6] | Guo Y L, Han E-H, Wang J Q. Effects of forging and heat treatments on stress corrosion behavior of 316LN stainless steel in high temperature caustic solution [J]. Acta Metall. Sin., 2015,51: 659|(郭跃岭, 韩恩厚, 王俭秋. 锻造和热处理对316LN不锈钢在高温碱性溶液中应力腐蚀行为的影响[J]. 金属学报, 2015, 51: 659) | [7] | Ming H L, Zhang Z M, Xiu P Y, et al.Microstructure, residual strain and stress corrosion cracking behavior in 316L heat-affected zone[J]. Acta Metall. Sin.(Engl. Lett.), 2016, 29: 848 | [8] | Chen J J, Lu Z P, Xiao Q, et al.The effects of cold rolling orientation and water chemistry on stress corrosion cracking behavior of 316L stainless steel in simulated PWR water environments[J]. J. Nucl. Mater., 2016, 472: 1 | [9] | Du D H, Chen K, Yu L, et al.SCC crack growth rate of cold worked 316L stainless steel in PWR environment[J]. J. Nucl. Mater., 2015, 456: 228 | [10] | Zhang L T, Wang J Q.Stress corrosion crack propagation behavior of domestic forged nuclear grade 316L stainless steel in high temperature and high pressure water[J]. Acta Metall. Sin., 2013, 49: 911(张利涛, 王俭秋. 国产锻造态核级管材316L不锈钢在高温高压水中的应力腐蚀裂纹扩展行为[J]. 金属学报, 2013, 49: 911) | [11] | Zhang L T, Wang J Q.Effect of dissolved oxygen content on stress corrosion cracking of a cold worked 316L stainless steel in simulated pressurized water reactor primary water environment[J]. J. Nucl. Mater., 2014, 446: 15 | [12] | Tice D R, Nouraei S, Mottershead K J, et al.Effects of cold work and sensitization on stress corrosion crack propagation of austenitic stainless steels in PWR primary coolant conditions [A]. 14th Int. Conf. on Environmental Degradation of Materials in Nuclear Power Systems[C]. Virginia Beach, VA: 2009: 158 | [13] | Andresen P L, Ford F P.Fundamental modeling of environmental cracking for improved design and lifetime evaluation in BWRs[J]. Int. J. Pressure Vessels Pip., 1994, 59: 61 | [14] | Marin M L, Redondo M S, Velasco G, et al.Crack growth rate of hardened austenitic stainless steels in BWR and PWR environments [A]. 11th Int. Conf. Environmental Degradation of Materials in Nuclear Systems[C]. Stevenson, WA: 2003: 845 | [15] | Zhu R L, Wang J Q, Zhang L T, et al.Stress corrosion cracking of 316L HAZ for 316L stainless steel/ Inconel 52M dissimilar metal weld joint in simulated primary water[J]. Corros. Sci., 2016, 112: 373 | [16] | Qian D Z, Xie X J.Water quality engineering of nuclear power plant [M]. Beijing: China Electric Power Press, 2008(钱达中, 谢学军. 核电站水质工程 [M]. 北京: 中国电力出版社, 2008) | [17] | Lu Z P, Shoji T, Takeda Y, et al.Transient and steady state crack growth kinetics for stress corrosion cracking of a cold worked 316L stainless steel in oxygenated pure water at different temperatures[J]. Corros. Sci., 2008, 50: 561 | [18] | Andresen P L, Emigh P W, Morra M M, et al.Effects of PWR primary water chemistry and deaerated water on SCC [A]. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C]. Salt Lake City, UT: TMS, 2006: 989 | [19] | Wang J Q, Li X H, Huang F, et al.Comparison of corrosion resistance of UNS N06690TT and UNS N08800SN in simulated primary water with various concentrations of dissolved oxygen[J]. Corrosion, 2014, 70: 598 | [20] | Beverskog B, Puigdomenech I.Pourbaix diagrams for the ternary system of Iron-Chromium-Nickel[J]. Corrosion, 1999, 55: 1077 | [21] | Sennour M, Marchetti L, Martin F, et al.A detailed TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactor[J]. J. Nucl. Mater., 2010, 402: 147 | [22] | Lv Z P, Takeda Y, Shoji T.Some fundamental aspects of thermally activated processes involved in stress corrosion cracking in high temperature aqueous environments[J]. J. Nucl. Mater., 2008, 383: 92 | [23] | Andresen P L, Morra M M.Stress corrosion cracking of stainless steels and nickel alloys in high-temperature water[J]. Corrosion, 2008, 64(1): 15 | [24] | Yang H, Xia S, Zhang Z L, et al.Improving the intergranular corrosion resistance of the weld heat-affected zone by grain boundary engineering in 304 austenitic stainless steel[J]. Acta Metall. Sin., 2015, 51: 333(杨辉, 夏爽, 张子龙等. 晶界工程对于改善304奥氏体不锈钢焊接热影响区耐晶间腐蚀性能的影响[J]. 金属学报, 2015, 51: 333) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|