Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (6): 495-501    DOI: 10.11902/1005.4537.2013.233
  本期目录 | 过刊浏览 |
电参数对AZ31B镁合金微弧氧化膜微观形貌及耐蚀性的影响
崔学军1,2(), 王荣2, 魏劲松2, 白成波2, 林修洲1,2
1. 四川理工学院 材料腐蚀与防护四川省重点实验室 自贡 643000
2. 四川理工学院 材料与化学工程学院 自贡 643000
Effect of Electrical Parameters on Micromorphology and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Mg Alloy
CUI Xuejun1,2(), WANG Rong2, WEI Jinsong2, BAI Chengbo2, LIN Xiuzhou1,2
1. Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, China
2. College of Materials and Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
全文: PDF(4261 KB)   HTML
摘要: 

在含有丙三醇的硅酸盐体系中,通过微弧氧化法在AZ31B镁合金表面获得了细致均匀微孔的氧化膜。以SEM、电化学工作站和测厚仪为表征手段,利用单因素法分别考察了恒压模式下电压、频率、占空比对氧化膜结构、耐蚀性及厚度的影响。结果表明:随电压的增加,氧化膜的表面微孔尺寸和厚度均增大,但膜层耐蚀性能先增加后降低;随频率的增加,膜表面微孔尺寸减小,耐蚀性能增大,但频率改变对膜层的厚度影响较小;当占空比>45%时,膜层的表面微孔尺寸及厚度有增大趋势,膜层表面出现击穿破坏而导致耐蚀性能降低。优化的电参数为:电压230~260 V,频率300~500 Hz,占空比30%~45%。

关键词 镁合金微弧氧化电参数耐蚀性    
Abstract

A micro-arc oxidation coating containing uniformly distributed fine pores was obtained on AZ31B Mg alloy in a glycerol containing silicate aqueous solution. The effect of electrical parameters, such as voltage, frequency and duty cycle on the micromorphology, corrosion resistance and thickness of the micro-arc oxidation (MAO) coating was investigated by means of scanning electron microscope (SEM), electrochemical workstation and thickness gauge. The results show that the size of micro-pores and the thickness of MAO coating increase accordingly with the increasing voltage, while the corrosion resistance first increases and then decreases. However, the diameter of micros-pores decreases with the increasing frequency while corrosion resistance increases; the frequency has a weak effect on the thickness of the coating; when the duty cycle is larger than 45%, the size of micro-pores and thickness are apt to increase while the corrosion resistance decreases due to the breakdown and damage of MAO coating. The optimal electrical parameters for obtaining an excellent MAO coating are voltage 230~260 V, frequency 300~500 Hz and duty cycle 30%~45%.

Key wordsmagnesium alloy    micro-arc oxidation    electrical parameter    corrosion resistance
    
ZTFLH:  TG174  
基金资助:四川省教育厅重点项目 (12ZA261),材料腐蚀与防护四川省重点实验室开放基金项目 (2013CL01),四川理工学院人才引进基金项目 (2014RC18) 和四川理工学院大学生创新基金项目资助
作者简介: null

崔学军,男,1978年生,博士,副教授,研究方向为功能涂层及镁合金的腐蚀防护

引用本文:

崔学军, 王荣, 魏劲松, 白成波, 林修洲. 电参数对AZ31B镁合金微弧氧化膜微观形貌及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 495-501.
Xuejun CUI, Rong WANG, Jinsong WEI, Chengbo BAI, Xiuzhou LIN. Effect of Electrical Parameters on Micromorphology and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Mg Alloy. Journal of Chinese Society for Corrosion and protection, 2014, 34(6): 495-501.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.233      或      https://www.jcscp.org/CN/Y2014/V34/I6/495

图1  不同电压下获得的MAO膜的表面形貌
图2  MAO膜层厚度与电压的关系
图3  不同电压下获得的MAO样品在3.5%NaCl溶液中的极化曲线
Voltage / V -Ecorr / mV icorr / μAcm-2 Rp / kΩcm2
200 1494 2.577 12.219
230 1382 0.3450 92.319
260 1475 0.3194 114.902
290 1444 0.4123 87.586
320 1437 1.241 22.897
表1  与图3极化曲线相对应的拟合电参数值
图4  不同频率下获得的MAO膜的表面形貌
Frequency / Hz -Ecorr / mV icorr / μAcm-2 Rp / kΩcm2
100 1444 2.227 19.964
200 1489 0.7221 18.808
300 1475 0.3194 114.902
400 1415 0.2937 40.897
500 1490 0.3883 31.562
表2  与图6极化曲线相对应的拟合电参数值
图5  MAO膜层的厚度与频率的关系
图6  不同频率下获得的MAO样品在3.5%NaCl溶液中的极化曲线
图7  不同占空比下获得的MAO膜的表面形貌
图8  MAO膜层的厚度与占空比的关系
图9  不同占空比下获得的MAO样品在3.5%NaCl溶液中的极化曲线
Duty cycle -Ecorr / mV icorr / μAcm-2 Rp / kΩcm2
15% 1514 1.1110 18.045
30% 1474 0.3194 114.902
45% 1530 0.3365 26.552
60% 1419 0.5898 12.462
75% 1506 0.9311 6.062
表3  与图9极化曲线相对应的拟合电参数值
[1] Song G L. Recent progress in corrosion and protection of magnesium alloys[J]. Adv. Eng. Mater., 2005, 7(7): 563-586
[2] Hu R G, Zhang S, Bu J F, et al. Recent progress in corrosion protection of magnesium alloys by organic coatings[J]. Prog. Org. Coat., 2012, 73: 129-141
[3] Kang H J, Li Q A, Zhou W. Prospect of anodization on magnesium alloys[J]. Corros. Sci. Prot. Technol., 2012, 24(6): 513-516
[3] (亢海娟, 李全安, 周伟. 镁合金的腐蚀特性与防护措施[J]. 腐蚀科学与防护技术, 2012, 24(6): 513-516)
[4] Wang M J, Wang R C, Peng C Q, et al. Corrosion characteristic and corrosion prevention technology of magnesium alloy[J]. Corros. Sci. Prot. Technol., 2012, 24(6): 508-512
[4] (王美娟, 王日初, 彭超群等. 镁合金阳极氧化研究进展[J]. 腐蚀科学与防护技术, 2012, 24(6): 508-512)
[5] Guo Q Z, Zhang W, Du K Q, et al. Effect of negative potential on compactness of plasma electrolyte oxidation coatings on magnesium alloy AZ31B by electrochemical impedance spectrum[J]. J. Chin. Soc. Corros. Prot., 2012, 32(6): 467-472
[5] (郭泉忠, 张伟, 杜克勤等. 电化学阻抗谱研究负向电压对AZ31B镁合金微弧氧化陶瓷层致密性的影响[J]. 中国腐蚀与防护学报, 2012, 32(6): 467-472)
[6] Hwang I J, Hwang D Y, Ko Y G, et al. Correlation between current frequency and electrochemical properties of Mg alloy coated by micro arc oxidation[J]. Surf. Coat. Technol., 2012, 206: 3360-3365
[7] Chang L R, Cao F H, Cai J S, et al. Influence of electric parameters on MAO of AZ91D magnesium alloy using alternative square-wave power source[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 307-316
[8] Ma Y, Zhan H, Ma Y Z, et al. Effects of electrical parameters on microstructure and corrosion resistance of micro-arc oxidation coatings on AZ91D magnesium alloys[J]. Chin. J. Nonferrous Met., 2010, 20(8): 1467-1473
[8] (马颖, 詹华, 马跃洲等. 电参数对AZ91D 镁合金微弧氧化膜层微观结构及耐蚀性的影响[J]. 中国有色金属学报, 2010, 20(8): 1467-1473)
[9] Wang S Y, Xia Y P, Liu L. Influences of C3H8O3 concentration on formation and characteristics of MAO coatings on AZ91D magnesium alloy[J]. J. Chin. Soc. Corros. Prot., 2013, 33(3): 235-240
[9] (王淑艳, 夏永平, 刘莉. C3H8O3含量对AZ91D镁合金微弧氧化过程及膜层特性的影响[J]. 中国腐蚀与防护学报, 2013, 33(3): 235-240)
[10] Liu F, Shan D Y, Song Y W, et al. Corrosion behavior of the composite ceramic coating containing zirconium oxides on AM30 magnesium alloy by plasma electrolytic oxidation[J]. Corros. Sci.2011, 53: 3845-3852
[11] Liu F, Shan D Y, Song Y W, et al. Effect of additives on the properties of plasma electrolytic oxidation coatings formed on AM50 magnesium alloy in electrolytes containing K2ZrF6[J]. Surf. Coat. Technol., 2011, 206: 455-463
[12] Song Y W, Dong K H, Shan D Y, et al. Investigation of a novel self-sealing pore micro-arc oxidation film on AM60 magnesium alloy[J]. J. Magnes. Alloy., 2013, 1: 82-87
[13] Yagi S, Kuwabara K, Fukuta Y, et al. Formation of self-repairing anodized film on ACM522 magnesium alloy by plasma electrolytic oxidation[J]. Corros. Sci., 2013, 73: 188-195
[14] Ghasemi A, Raja V S, Blawert C, et al. The role of anions in the formation and corrosion resistance of the plasma electrolytic oxidation coatings[J]. Surf. Coat. Technol., 2012, 204: 1469-1478
[15] Mandelli A, Bestetti M, Da Forno A, et al. A composite coating for corrosion protection of AM60B magnesium alloy[J]. Surf. Coat. Technol., 2011, 205: 4459-4465
[16] Ding J, Liang J, Hu L T, et al. Effects of sodium tungstate on characteristics of microarc oxidation coatings formed on magnesium alloy in silicate-KOH electrolyte[J]. Trans. Nonferrous Met. Soc. China, 2007, 17(2): 244-249
[17] Duan H P, Yan C W, Wang F H. Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution[J]. Electrochim. Acta, 2007, 52(15): 5002-5009
[18] Wu D, Liu X D, Lv K, et al. Influence of glycerol on micro-arc oxidation process and properties of the ceramic coatings on AZ91D magnesium alloy[J]. Mater. Prot., 2009, 42(2): 1-3
[18] (乌迪, 刘向东, 吕凯等. 丙三醇对镁合金微弧氧化过程及膜层的影响[J]. 材料保护, 2009, 42(2): 1-3)
[19] Guo H F, An M Z,Xu S, et al. Effect of current density on mechanism of micro-arc oxidization and property of ceramic coating formed on magnesium alloys[J]. Rare Met. Mater. Eng., 2005, 34(10): 1554-1557
[19] (郭洪飞, 安茂忠, 徐莘等. 电流密度对镁合金微弧氧化过程及氧化陶瓷膜性能的影响[J]. 稀有金属材料与工程, 2005, 34(10): 1554-1557)
[20] Wang H B,Fang Z G,Jiang B L. Microarc Oxidation Technology and Its Applications in Sea Environments[M]. Beijing: National Defense Industry Press, 2010: 6-123
[20] (王虹斌,方志刚,蒋百灵. 微弧氧化技术及其在海洋环境中的应用[M]. 北京: 国防工业出版社, 2010: 6-123)
[21] Jiang B L, Liu D J. Scientific aspects of restricting development and application of micro-arc oxidation technology[J]. Chin. J. Nonferrous Met., 2011, 21(10): 2402-2407
[21] (蒋百灵, 刘东杰. 制约微弧氧化技术应用开发的几个科学问题[J]. 中国有色金属学报, 2011, 21(10): 2402-2407)
[22] Cui X J, Liu C H, Yang R S, et al. Duplex-layered manganese phosphate conversion coating on AZ31 Mg alloy and its initial formation mechanism[J]. Corros. Sci., 2013, 76: 474-485
[1] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[2] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[3] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[4] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[5] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[6] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[7] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[8] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[9] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[10] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[11] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[12] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[13] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[14] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[15] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.