Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (5): 425-429    
  研究报告 本期目录 | 过刊浏览 |
无铬纳米锌铝涂层的微观组织及腐蚀性能
朱俊谋1, 姚正军1, 蒋穹1, 魏东博1, 尹国贤2, 罗西希1, 周文斌1
1. 南京航空航天大学材料科学与技术学院 南京 211106;
2. 江苏麟龙新材料股份有限公司 无锡 214100
Microstructure and Corrosion Resistance of Cr-free Nanocomposite Zn/Al Coatings
ZHU Junmou1, YAO Zhengjun1, JIANG Qiong1, WEI Dongbo1, YIN Guoxian2,
LUO Xixi1, ZHOU Wenbin1
1. College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
2. Jiangsu Linglong New Materials Co. Ltd., Wuxi 214100, China
全文: PDF(4929 KB)  
摘要: 向无铬锌铝涂层中分别加入3种纳米微粒ZnO,TiO2和SiO2制备纳米复合涂层,通过盐水浸泡实验和电化学测试研究其耐蚀性,结合SEM等手段观察纳米复合涂层显微组织及其在盐水中的腐蚀情况,分析纳米微粒在涂层中所起作用。结果表明,3种纳米微粒的加入能够加强涂层的阴极保护作用,并能延缓涂层金属粉末的消耗,较无铬锌铝涂层更易减慢腐蚀速率。其中,纳米SiO2复合涂层耐蚀性最佳,纳米TiO2复合涂层略次,ZnO纳米复合涂层耐蚀效果较差,3种纳米复合涂层耐蚀性均优于无铬锌铝涂层。
关键词 无铬纳米复合涂层耐蚀性阴极保护    
Abstract:In order to improve the corrosion resistance of chromium-free Zn/Al coating, three different nanoparticles, eg. SiO2, TiO2 and ZnO were added in the coating respectively to form nanocomposite coatings. Corrosion properties of the nanocomposite coatings were examined through salt water immersion method and electrochemical method. Furthermore, the microstructure and corrosion products of the coatings were analyzed by means of SEM and EDS. The experimental results showed that the nanoparticles dispersed in the coating in the form of flake structure which formed a more effective physical shield, extending the path of the corrosive medium to substrate. Furthermore, the fine grain strengthening was dominant to make the coating a good shielding property when nanoparticle was added. Tafel curves indicated that the nanocomposite coating with SiO2 possessed the best cathodic protection among three nanocomposite coatings, and the corrosion resistance of three nanocomposie coatings was better than that of the chromium-free Zn/Al coating.
Key wordsCr-free    nanocomposite coating    corrosion resistance    cathodic protection
    
ZTFLH:  TG179  

引用本文:

朱俊谋, 姚正军, 蒋穹, 魏东博, 尹国贤, 罗西希, 周文斌. 无铬纳米锌铝涂层的微观组织及腐蚀性能[J]. 中国腐蚀与防护学报, 2013, 33(5): 425-429.
ZHU Junmou, YAO Zhengjun, JIANG Qiong, WEI Dongbo, YIN Guoxian,
LUO Xixi, ZHOU Wenbin. Microstructure and Corrosion Resistance of Cr-free Nanocomposite Zn/Al Coatings. Journal of Chinese Society for Corrosion and protection, 2013, 33(5): 425-429.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I5/425

[1] Zhang L D, Mou J M. Nanometer Materials and Nanometer Structure [M]. Beijing: Science Press, 2002
(张立德, 牟季美. 纳米材料和纳米结构 [M]. 北京: 科学出版社, 2002)
[2] Zhang H J, Zhou Y B, Hu H T. Preparation and oxidation performance of an Al2O3-modified chromizing coating [J]. Rare Met. Mater. Eng., 2009, 38(9): 1655-1658
(张海军, 周月波, 胡海亭. Al2O3改性的渗铬涂层制备与氧化性能研究 [J]. 稀有金属材料与工程, 2009, 38(9): 1655-1658)
[3] Yu W G, Zhang Q F, Huang J Z. Corrosion resistance and anti-ultraviolet aging behavior of polyester-based composite coating doped with nano-TiO2 [J]. J. Mater. Prot., 2008, 41(2): 14-16
(于武刚, 张启富, 黄建中. 纳米TiO2涂层耐蚀性及抗紫外老化性能研究 [J]. 材料保护, 2008, 41(2): 14-16)
[4] Wang X D, Zhou W F, Sun D B, et al. Preparation and properties of zinc/aluminum based corrosion resistant coating reinforced with alumina nanoparticles [J]. J. Mater. Prot., 2006, 39(8): 4-7
(王旭东, 周伟峰, 孙冬柏等. Al2O3纳米粒子增强锌铝基耐蚀涂层的制备及性能研究 [J]. 材料保护, 2006, 39(8): 4-7)
[5] Zheng Q H, Li X H, Song X M, et al. Effect of SiO2 nanoparticles on performance of Dacromet coating [J]. J. Mater. Prot., 2006, 39(11): 14-17
(郑秋红, 李小红, 宋新民等. 二氧化硅纳米微粒对达克罗涂层性能的影响 [J]. 材料保护, 2006, 39(11): 14-17)
[6] GB10124-1988. Metal materials laboratory uniform corrosion immersion test method [S]. Beijing: China Standards Press, 1988
(GB10124-1988. 金属材料实验室均匀腐蚀全浸试验方法 [S]. 北京: 中国标准出版社, 1988)
[7] Yu S M, Yu S F, Yang Z Q. Anti-corrosion mechanism of layered structural material [J]. Auto. Technol. Mater., 2003, (2): 15-17
(于淑敏, 俞素芬, 杨志强. 片状叠层结构材料的耐蚀机理 [J]. 汽车工艺与材料, 2003, (2): 15-17)
[8] Peng D Q, Bai X D, Chen X W, et al. Comparison of electrochemical behavior of zirconium and zircaloy-4 implanted with Y and Ce ions [J]. Appl. Surf. Sci., 2004, 221(1-4): 259-271
[9] Zhang J Q. Electrochemical Measurement Technology [M]. Beijing: Chemical Industry Press, 2011
(张鉴清. 电化学测试技术 [M]. 北京: 化学工业出版社, 2011)
[10] Wu K Y, Wang Y, Zhao W M. Corrosion and Protection of Metal Structure [M]. Dongying: University of Petroleum Press, 2000
(吴开源, 王勇, 赵卫民. 金属结构的腐蚀与防护 [M]. 东营: 石油大学出版社, 2000)
[11] Liu Y, Zhu Z X, Ma J, et al. Study on self-sealing mechanism of Zn and Zn-Al coating based on electrochemical impedance spectroscopy [J]. Chin. Surf. Eng., 2005, 18(2): 27-30
(刘燕, 朱子新, 马洁等. 基于电化学阻抗谱Zn及Zn-Al涂层的自封闭机理研究 [J]. 中国表面工程, 2005, 18(2): 27-30)
[12] Jiang Q, Miao Q, Yao Z J. Microstructure and corrosion resistance of waterborne Al-Zn-Si alloy coating [J]. J. Chin. Soc. Corros. Prot., 2012, 32(4): 311-316
(蒋穹, 缪强, 姚正军. 水性Al-Zn-Si合金涂层微观组织及腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2012, 32(4): 311-316)
[13] Han Z Z, Tang Y L, Tang Y M, et al. Preparation of rare earth nano-TiO2 composite film on aluminum alloy by brush plating and its corrosion resistance [A]. The Sixth National Conference on corrosion [C]. Yinchuan: 2011
(韩忠智, 唐鋆磊, 唐聿明等. 铝合金表面电刷镀制备稀土-纳米TiO2复合膜层及耐蚀性研究 [A]. 第六届全国腐蚀大会论文集 [C]. 银川: 2011)
[14] Zhou Y B, Zhang H J, Wang Z T. Preparation and oxidation of an Y2O3-modified chromizing coating [J]. Corros. Rev., 2008, 26(1): 39-50
[15] Xi Y J, He L L, Wang F H. Effect of nanocrystallization on the oxidation and corrosion resistance of Ti-48Al-8Cr-2Ag alloy [J]. J. Chin. Soc. Corros. Prot., 2005, 25(3): 135-141
(席艳君, 贺连龙, 王福会. 纳米化对Ti-48A1-8Cr-2Ag合金抗氧化和抗腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2005, 25(3): 135-141)
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[3] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[4] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[5] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[7] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[8] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[9] 解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[10] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[11] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[12] 赵书彦,童鑫红,刘福春,翁金钰,韩恩厚,郦晓慧,杨林. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[13] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[14] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[15] 程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.