Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (3): 226-230    
  本期目录 | 过刊浏览 |
咪唑啉与硫脲在CO2腐蚀体系中的
缓蚀协同作用机理
赵景茂 陈国浩
北京化工大学材料科学与工程学院 北京 100029
Synergistic Inhibition Mechanism of Imidazoline and Thiourea in CO2 Corrosive System
ZHAO Jingmao, CHEN Guohao
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
全文: PDF(852 KB)  
摘要: 采用极化曲线和电化学阻抗技术(EIS)研究了油酸基咪唑啉季铵盐(OIMQ)与硫脲(TU)对Q235碳钢在CO2饱和盐水溶液中的缓蚀协同效应。结果表明,TU对碳钢腐蚀的阴极过程和阳极过程都有强烈的抑制作用,而OIMQ是一种以抑制阳极为主的混合型缓蚀剂。二者复配使用,可以有效降低使用浓度,表现出优异的缓蚀协同效应。OIMQ与TU在碳钢表面形成了一层双层结构的缓蚀剂吸附膜,TU可能主要存在于膜的底部,而OIMQ主要存在于膜的顶部,这种结构的缓蚀剂膜一方面阻止了腐蚀性离子的渗透,另一方面也限制了TU分子的脱附。
关键词 缓蚀剂协同效应咪唑啉硫脲CO2腐蚀    
Abstract:The synergistic inhibition effect between oleic-based imidazoline quaternary ammonium salt (OIMQ) and thiourea (TU) for Q235 carbon steel in CO2-saturated brine solution was investigated by using polarization curves and electrochemical impedance spectroscopy (EIS). The results showed that TU had strong inhibition on the anodic and cathodic processes of carbon steel corrosion, while OIMQ acted as mixed-type inhibitor preferentially restraining the anodic process of metal. The combination of OIMQ and TU could effectively decrease the additive concentration and showed excellent synergistic inhibition effect. A bi-layer inhibitor film with the inner layer of TU molecules and the outer layer of imidazoline molecules was formed, which could retard the desorption of TU molecules and the attack of aggressive ions.
Key wordscorrosion inhibitor    synergistic effect    imidazoline    thiourea    CO2 corrosion
    
ZTFLH:  TG174.42  

引用本文:

赵景茂 陈国浩. 咪唑啉与硫脲在CO2腐蚀体系中的
缓蚀协同作用机理[J]. 中国腐蚀与防护学报, 2013, 33(3): 226-230.
. Synergistic Inhibition Mechanism of Imidazoline and Thiourea in CO2 Corrosive System. Journal of Chinese Society for Corrosion and protection, 2013, 33(3): 226-230.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I3/226

[1] Lv Z P, Zheng J S, Peng F M. Reduing the used concentration of CO2 corrosion inhibitor by synergistic effect [J]. Corros. Prot., 1999, 20(9): 395-397
(吕战鹏, 郑家燊, 彭芳明. 利用缓蚀协同效应降低二氧化碳缓蚀剂使用浓度 [J]. 腐蚀与防护, 1999, 20(9): 395-397)
[2] Okafor P C, Liu C B, Liu X, et al. Corrosion inhibition and adsorption behavior of imidazoline salt on N80 carbon steel in CO2-saturated solutions and its synergism with thiourea [J]. J. Solid State Electrochem., 2010, 14: 1367-1376
[3] Zhao J M, Liu H X, Di W, et al. The inhibition synergistic effect between imidazoline derivative and thiourea [J]. Electrochemistry, 2004, 10(4): 440-445
(赵景茂, 刘鹤霞, 狄伟等. 咪唑啉衍生物与硫脲之间的缓蚀协同效应研究 [J]. 电化学, 2004, 10(4): 440-445)
[4] Chen G H. Study of the inhibition mechanism and synergistic effect of corrosion inhibitors in sweet system [D]. Beijing: Beijing University of Chemical Technology, 2012
(陈国浩. 二氧化碳腐蚀体系缓蚀剂的缓蚀机理及缓蚀协同效应研究 [D]. 北京: 北京化工大学, 2012)
[5] Cao C N. Corrosion Electrochemistry [M]. Beijing: Chemical Industry Press, 1994
(曹楚南. 腐蚀电化学 [M]. 北京: 化学工业出版社, 1994)
[6] Wang J, Chen J J, Cao D Z, et al. A study on the electrochemical behavior of N,N-dipropynoxy methyl alkyl amine inhibitors [J]. J. Chin. Soc. Corros. Prot., 1991, 11(3): 279-284
(王佳, 陈家坚, 曹殿珍等. 二丙炔氧甲基烷基胺类缓蚀剂的电化学行为 [J]. 中国腐蚀与防护学报, 1991, 11(3): 279-284)
[7] Taylor S R, Gileadi E. Physical interpretation of the Warburg impedance [J]. Corrosion, 1995, 51(9): 664-671
[8] Desimone M P, Grundmeier G, Gordillo G, et al. Amphiphilic amido-amine as an effective corrosion inhibitor for mild steel exposed to CO2 saturated solution: Polarization, EIS and PM-IRRAS studies [J]. Electrochim. Acta, 2011, 56(8): 2990-2998
[9] Zhang G A, Chen C F, Lu M X, et al. Evaluation of inhibition efficiency of an imidazoline derivative in CO2-containing aqueous solution [J]. Mater. Chem. Phys., 2007, 105(2-3): 331-340
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 卢爽, 任正博, 谢锦印, 刘琳. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[4] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[5] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[6] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[7] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[8] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[9] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[10] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[11] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[12] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[13] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[14] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[15] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.