Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (3): 175-181    
  综述 本期目录 | 过刊浏览 |
铝合金搅拌摩擦焊接接头腐蚀行为研究进展
张 华1 孙大同1 张 贺1 赵衍华2 马芳芳1 许可人2
1. 北京科技大学材料科学与工程学院 北京 100083;
2. 首都航天机械公司 北京 100076
Progress in Corrosion Behavior of Friction Stir Welded Aluminum Alloy
ZHANG Hua1, SUN Datong1, ZHANG He1, ZHAO Yanhua2, #br# MA Fangfang1, XU Keren2
1. School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China;
2. Capital Aerospace Machinery Company,Beijing 100076, China
全文: PDF(461 KB)  
摘要: 

介绍了铝合金搅拌摩擦焊接接头腐蚀行为的最新研究进展,重点讨论了铝合金搅拌摩擦焊接接头腐蚀行为的研究方法,包括应力腐蚀法、盐雾实验法、溶液浸泡法、电化学法、凝胶可视化法等,并指出其存在的问题,分析了接头腐蚀机理及提高接头耐蚀性的方法。

关键词 铝合金搅拌摩擦焊腐蚀方法腐蚀行为    
Abstract

The current status of the study on corrosion behavior of friction stir welded (FSW) aluminum alloy was reviewed, the corrosion methods including stress corrosion test, salt spray test, immersion test, electrochemical test and gel visualization test were discussed emphatically, and the existing problems in corrosion methods were pointed out, the corrosion mechanism and the measures about how to improve the corrosion properties of FSW joints were also analyzed.

Key wordsaluminum alloy    friction stir welding (FSW)    corrosion method    corrosion behavior
    
ZTFLH:  TG178  

引用本文:

张华 孙大同 张 贺 赵衍华 马芳芳 许可人. 铝合金搅拌摩擦焊接接头腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2013, 33(3): 175-181.
. Progress in Corrosion Behavior of Friction Stir Welded Aluminum Alloy. Journal of Chinese Society for Corrosion and protection, 2013, 33(3): 175-181.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I3/175

[1] Wang G Q, Zhao Y H. The Friction Stir Welding of Aluminum Alloy [M]. Beijing: China Austronautic Publishing House, 2010
(王国庆, 赵衍华. 铝合金的搅拌摩擦焊接 [M]. 北京: 中国宇航出版社, 2010)
[2] Zhou W S, Yao J S. Aluminum and Aluminum Alloy Welding [M]. Beijing: Mechanical Industry Press, 2006
(周万盛, 姚君山. 铝及铝合金的焊接 [M]. 北京: 机械工业出版社, 2006)
[3] Squillace A, Fenzo D A, Giorleo G, et al. A comparison between FSW and TIG welding techniques: modifications of microstructure and pitting corrosion resistance in AA 2024-T3 butt joints [J]. J. Mater. Process. Technol., 2004, 152(1): 97-105
[4] Zhou Y J, Sun D C, Xing L, et al. Microstructure and stress corrosion cracking behavior of friction stir welded aluminum alloy 5A06 [J]. J. Int. Met. Work., 2004, 25(3): 45-49
(周永杰, 孙德超, 邢丽等. 5A06铝合金搅拌摩擦焊接头组织和应力腐蚀行为分析 [J]. 国外金属加工, 2004, 25(3): 45-49)
[5] Li Z X, Arbegast W J, Hartley P J, et al. Microstructure characterization and stress corrosion evaluation of friction stir welded Al 2195 and Al 2219 alloys [A]. Trends in Welding research: proceedings of the 5th international conference [C]. USA, 1998
[6] Frankel G S, Xia Z. Localized corrosion and stress corrosion cracking resistance of friction stir welded aluminum alloy 5454 [J]. Corrosion, 1999, 55(2): 139-150
[7] Wadeson D A, Zhou X, Thompson G E, et al. Corrosion behaviour of friction stir welded AA7108 T79 aluminum alloy [J]. Corros. Sci., 2006, 48(4): 887-897
[8] Jariyaboon M, Davenport A J, Ambat R, et al. The effect of welding parameters on the corrosion behaviour of friction stir welded AA2024-T351 [J]. Corros. Sci., 2007, 49(2): 877-909
[9] Jariyaboon M, Davenport A J, Ambat R, et al. Effect of cryogenic cooling on corrosion of friction stir welded AA7010-T7651 [J]. Anti-Corros. Methods Mater., 2010, 57(2): 83-89
[10] Emilie B, Angeline P Q, Monique P, et al. Relationship between microstructure, microhardness and corrosion sensitivity of an AA 2024-T3 friction stir welded joint [J]. Corros. Sci., 2011, 53(9): 3026-3034
[11] Kang J, Fu R D, Luan G H, et al. In-situ investigation on the pitting corrosion behavior of friction stir welded joint of AA2024-T3 aluminum alloy [J]. Corros. Sci., 2010, 52(2): 620-626
[12] Yuan G C, Li Z H, Zhu Z H, et al. The friction stir welds performance of stress corrosion cracking for 5083 aluminum alloy plate[J]. Mater. Res. Appl., 2010, 4(4): 509-513
(袁鸽成, 李仲华, 朱振华等. 5083铝合金搅拌摩擦焊缝应力腐蚀行为 [J]. 材料研究与应用, 2010, 4(4): 509-513)
[13] Shen C B, Zhang J Y, Ge J P. Microstructures and electrochemical behaviors of the friction stir welding dissimilar weld [J]. J. Environ. Sci., 2011, 23: S32-S35
[14] Shen C B, Wang Z Z, Quan G F, et al. Microstructures and electrochemical performance of welds of 6082 aluminum alloy prepared by friction-stir welding [J]. Corros. Sci. Prot. Technol., 2010, 22(5): 400-402
(沈长斌, 王忠志, 权高峰等. 6082铝合金搅拌摩擦焊接头组织及腐蚀性能研究 [J]. 腐蚀科学与防护技术, 2010, 22(5): 400-402)
[15] Shen C B, Zhao Y D, Liu S H, et al. Electrochemical corrosion behavior of friction stir welding dissimilar weld of 5083 and 6082 aluminum alloy [J]. J. Aeronaut. Mater., 2009, 29(5): 24-28
(沈长斌, 赵亚东, 刘书华等. 铝合金5083-6082搅拌摩擦焊焊缝的电化学腐蚀行为 [J]. 航空材料学报, 2009, 29(5): 24-28)
[16] Srinivasan P B, Arora K S, Dietzel W, et al. Characterisation of microstructure, mechanical properties and corrosion behaviour of an AA2219 friction stir weldment [J]. J. Alloys Compd., 2010, 492(1-2): 631-637
[17] Paglia C S, Buchheit R G. Microstructure, microchemistry and environmental cracking susceptibility of friction stir welded 2219-T87 [J]. Mater. Sci. Eng., 2006, A429(1-2): 107-114
[18] Srinivasan P B, Dietzel W, Zettler R, et al. Stress corrosion cracking susceptibility of friction stir weldedAA7075-AA6056 dissimilar joint [J]. Mater. Sci. Eng., 2005, A392(1-2): 292-300
[19] Paglia C S, Buchheit R G. The time-temperature-corrosion susceptibility in a 7050-T7451 friction stir weld [J]. Mater. Sci. Eng., 2008, A492(1-2): 250-254
[20] Hatamleh O, Singh P M, Garmestani H. Corrosion susceptibility of peened friction stir welded 7075 aluminum alloy joints [J]. Corros. Sci., 2009, 51(1): 135-143
[21] Wang W. Research on stress corrosion property of aluminum alloys friction stir welds [D]. Xi'an: Xi'an University of Architecture and Technology, 2010
(王文. 铝合金搅拌摩擦焊接接头应力腐蚀性能研究 [D]. 西安: 西安建筑科技大学, 2010)
[22] Tianhua Institute of Chemical Machinery & Automation. Corrosion and Protection Manual [M]. Beijing: Chemistry Industry Press, 2008
(天华化工机械及自动化研究设计院. 腐蚀与防护手册 [M]. 北京: 化学工业出版社, 2008)
[23] Li X G. Material Corrosion and Protection [M]. Changsha: Central South University Press, 2009
(李晓刚. 材料腐蚀与防护 [M]. 长沙: 中南大学出版社, 2009)
[24] Pao P S, Gill S J, Feng C R, et al. Corrosion-fatigue crack growth in friction stir welded Al7050 [J]. Scr. Mater., 2001, 45(5): 605-612
[25] Fonda R W, Pao P S, Jones H N, et al. Microstructure, mechanical properties, and corrosion of friction stir welded Al 5456 [J]. Mater. Sci. Eng., 2009, A519(1-2): 1-8
[26] Fu R D, He M, Luan G H, et al. Corrosion behavior of friction stir welded joint of 2024 aluminum alloys under acid salt spraying [J]. J. Chin. Soc. Corros. Prot., 2010, 30(5): 396-402
(付瑞东, 何淼, 栾国红等. 酸性盐雾下2024铝合金搅拌摩擦焊接头的腐蚀行为 [J]. 中国腐蚀与防护学报, 2010, 30(5): 396-402)
[27] Fu R D, Luan G H, Dong C L, et al. Corrosion behavior of frictionstir welded joint of 7075 aluminum alloy by acid salt spray [J]. Corros. Sci. Prot. Technol., 2009, 21(6): 580-585
(付瑞东, 栾国红, 董春林等. 酸性盐雾中7075铝合金搅拌摩擦焊接头的腐蚀行为 [J]. 腐蚀科学与防护技术, 2009, 21(6): 580-585)
[28] Dhanapal A, Boopathy S R, Balasubramsnian V, et al. Developing an empirical relationship to predict the corrosion rate of friction stir welded AZ61A magnesium alloy under salt fog environment [J]. Mater. Des., 2011, 32(10): 5066-5072
[29] Prasad Rao K, Janaki Ram G D, Stucker B E. Effect of friction stir processing on corrosion resistance of aluminum-copper alloy gas tungsten arc welds [J]. Mater. Des., 2010, 31(3): 1576-1580
[30] Kang J, Liang S Y, Li G, et al. Effect of processing parameters on microstructure and corrosion behavior of friction stir welded 2024 aluminum alloy [J]. Corros. Sci. Prot. Technol., 2012, 24(1): 51-56
(康举, 梁苏莹, 李光等. 焊接参数对2024铝合金FSW接头组织及腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2012, 24(1): 51-56)
[31] Xu W F, Liu J H, Zhu H Q. Pitting corrosion of friction stir welded aluminum alloy thick plate in alkaline chloride solution [J]. Electrochim. Acta, 2010, 55(8): 2918-2923
[32] Park S H, Kim J S, Han M S. Corrosion and optimum corrosion protection potential of friction stir welded 5083-O Al alloy for leisure ship [J]. Trans. Nonferrous Met. Soc. China, 2009, 19(4): 898-903
[33] Kang J, Dong C L, Luan G H, et al. Corrosion mechanism on top surface of friction stir welded joint of 2024 aluminum alloy [J]. J. Chin. Soc. Corros. Prot., 2011, 31(4): 282-288
(康举, 董春林, 栾国红等. 2024铝合金搅拌摩擦焊焊缝表面腐蚀机理探索 [J]. 中国腐蚀与防护学报, 2011, 31(4): 282-288)
[34] Cao G, Kou S. Friction stir welding of 2219 aluminum:behavior of θ(Al2Cu) particles [J]. Weld. J., 2005, 84(1): 1-8
[35] Li J F, Zheng Z Q, Ren W D. Function mechanism of secondary phase on localized corrosion of Al alloy [J]. Mater. Rev., 2005, 19(2): 81-83
(李劲风, 郑子樵, 任文达. 第二相在铝合金局部腐蚀中的作用机制 [J]. 材料导报, 2005, 19(2): 81-83)
[36] Surekha K, Murty B S, Prasad R K. Microstructural characterization and corrosion behavior of multipass friction stir processed AA2219 aluminium alloy [J]. Surf. Coat. Technol., 2008, 202(17): 4057-4068
[37] Surekha K, Murty B S, Prasad R K. Effect of processing parameters on the corrosion behaviour of friction stir processed AA 2219 aluminum alloy [J]. Solid State Sci., 2009, 11(4): 907-917
[38] Surekha K, Murty B S, Prasad R K. Comparison of corrosion behaviour of friction stir processed and laser melted AA 2219 aluminium alloy [J]. Mater. Des., 2011, 32(8-9): 4502-4508
[39] Li Q, Zhao J J, Ma L, et al. Electrochemical localized corrosion behaviour of friction stir welded seam of 7A52 aluminum alloy [J]. Chin. Surf. Eng., 2010, 23(5): 78-81
(李奇, 赵军军, 马琳等. 7A52铝合金搅拌摩擦焊焊缝的电化学局部腐蚀行为 [J]. 中国表面工程, 2010, 23(5): 78-81)
[40] He M, Zhang J, Li G, et al. Friction stir welding joint corrosion of 2024 aluminum alloy under different conditions [J]. Aeronaut.Manuf. Technol., 2009, 19: 69-71
(何淼, 张健, 李光等. 不同环境下2024铝合金搅拌摩擦焊接头的腐蚀行为 [J]. 航空制造技术, 2009, 19: 69-71)
[41] Paglia C S, Buchheit R G. A look in the corrosion of aluminum alloy friction stir welds [J]. Scr. Mater., 2008, 58(5): 383-387
[42] Padovani C, Davenport A J, Connolly B J, et al. Corrosion protection of AA7449-T7951 friction stir welds by laser surface melting with an excimer laser [J]. Corros. Sci., 2011, 53(12): 3956-3969
[43] Kalita S J. Microstructure and corrosion properties of diode laser melted friction stir weld of aluminum alloy 2024 T351 [J]. Appl. Surf. Sci., 2011, 257(9): 3985-3997
[44] Tong J H, He M, Dong C L, et al. Influence of shot-peening to aircraft aluminum friction stir welding joint property and corrosion behavior [J]. Aeronaut. Manuf. Technol., 2009, (21): 69-71
(佟建华, 何淼, 董春林等. 喷丸处理对飞机铝合金搅拌摩擦焊接头性能及腐蚀行为的影响 [J]. 航空制造技术, 2009, (21): 69-71)
[45] Liu J. Effect of micro-arc oxidation on corrosion behavior of friction stir welding joint of 7075 aluminiumalloy [D]. Qinhuangdao:Yanshan University, 2010
(刘靖. 微弧氧化对7075铝合金搅拌摩擦焊接头腐蚀行为影响 [D]. 秦皇岛: 燕山大学, 2010)
[46] Prasad Rao K, Janaki Ram G D, Stucker B E. Improvement in corrosion resistance of friction stir welded aluminum alloys with micro arc oxidation coatings [J]. Scr. Mater., 2008, 58(11): 998-1001
[47] Lu L, Xue W B, Jin X Y, et al. Surface protection of friction stir welding joint of 5083 aluminum alloy by micro-arc oxidation [J].Trans. Mater. Heat Treat., 2011, 32(11): 140-144
(鲁亮, 薛文斌, 金小越等. 5083铝合金搅拌摩擦焊接头微弧氧化表面防护 [J]. 材料热处理学报, 2011, 32(11): 140-144)

[1] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[2] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[4] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[5] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[6] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[7] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[8] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[9] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[10] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[11] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[12] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[13] 郭铁明,张延文,秦俊山,宋志涛,董建军,杨新龙,南雪丽. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[14] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[15] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.