Please wait a minute...
中国腐蚀与防护学报  2013, Vol. 33 Issue (1): 36-40    
  技术报告 本期目录 | 过刊浏览 |
PO43-对304不锈钢在氯离子水溶液中小孔腐蚀形核过程的影响
石慧英,唐聿明,左 禹
北京化工大学材料科学与工程学院 北京 100029
Effects of PO43- on Pitting Nucleation of 304 Stainless Steel in Chloride Solutions
SHI Huiying, TANG Yumiung, ZUO Yu
School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
全文: PDF(5404 KB)  
摘要: 

利用动电位循环扫描的方法研究了PO43-对304不锈钢亚稳态孔蚀及稳定孔蚀形核与生长阶段的影响。随着PO43-浓度的增大,亚稳态孔蚀电位Em和稳定孔蚀电位Eb值均增大,即PO43-浓度的增大,抑制了亚稳态孔蚀和稳定孔蚀的形核。PO43-增加导致亚稳态孔蚀的平均生长速度和电流峰值降低,从而增大了亚稳态孔蚀转化为稳定孔蚀的难度,抑制了稳定孔蚀形核。但PO43-增加导致孔蚀再钝化电位Ep降低,使充分发展的稳定蚀孔更难于再钝化,其原因可能是磷酸盐膜在小孔孔口的沉淀会促进蚀孔生长的稳定性。

关键词 不锈钢孔蚀亚稳态孔蚀PO43-形核生长    
Abstract

The effects of PO43- on nucleation and growth of metastable and stable pitting were investigated by cycling potentiodynamic polarization. Both metastable pitting potential Em and stable pitting potential Eb increase with the increasing of PO43- concentration. Higher PO43- concentration results in lower average growth rate and peak current of metastable pitting, hence inhibits the nucleation of stable pitting. However, as PO43- concentration increases, the repassivation potential of stable pitting Ep decreases, indicating that the repassivation of the pit is retarded. The reason is explained by the deposition of phosphate film around the pit mouth, which may promote the growth stability of the pit.

Key wordsstainless steel    pitting    metastable pitting    PO43- nucleation    growth
    
ZTFLH:  TG172  

引用本文:

石慧英,唐聿明,左禹. PO43-对304不锈钢在氯离子水溶液中小孔腐蚀形核过程的影响[J]. 中国腐蚀与防护学报, 2013, 33(1): 36-40.
SHI Huiying, TANG Yumiung, ZUO Yu. Effects of PO43- on Pitting Nucleation of 304 Stainless Steel in Chloride Solutions. Journal of Chinese Society for Corrosion and protection, 2013, 33(1): 36-40.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2013/V33/I1/36

[1] Punckt C, Bolscher M, Rotermund H H, et al. Sudden onset of pitting corrosion on stainless steel as a critical phenomenon [J]. Science, 2004, 305: 1133-1136
[2] Vera Cruz R P, Nishikata A, Tsuru T. Pitting corrosion mechanism of stainless steels under wet-dry exposure in chloride-containing environments [J]. Corros. Sci., 1998, 40(1): 125-139
[3] Burstein G T, Liu C. Nucleation of corrosion pits in Ringer’s solution containing bovine serum [J]. Corros. Sci., 2007, 49: 4296-4306
[4] Mikhailov A S, Scully J R, Hudson J L. Nonequilibrium collective phenomena in the onset of pitting corrosion [J]. Surf. Sci., 2009, 603: 1912-1921
[5] Qu Q, Li L, Bai W, et al. Sodium tungstate as a corrosion inhibitor of cold rolled steel in peracetic acid solution [J]. Corros. Sci., 2009, 51: 2423-2428
[6] Igual Mu?oz A, García Antón J, Gui?ón J L, et al. Inhibition effect of chromate on the passivation and pitting corrosion of a duplex stainless steel in LiBr solutions using electrochemical techniques [J]. Corros. Sci., 2007, 49: 3200-3225
[7] Mu G N, Li X H, Qu Q, et al. Molybdate and tungstate as corrosion inhibitors for cold rolling steel in hydrochloric acid solution [J]. Corros. Sci., 2006, 48: 445-459
[8] Reffass M, Sabot R, Jeannin M, et al. Effects of phosphate species on localised corrosion of steel in NaHCO3 + NaCl electrolytes [J]. Electrochim. Acta, 2009, 54: 4389-4396
[9] Moraes S R, Huerta-Vilca D, Motheo A J. Corrosion protection of stainless steel by polyaniline electrosynthesized from phosphate buffer solutions [J]. Prog. Org. Coat., 2003, 48: 28-33
[10] Sieber I V, Hildebrand H, Virtanen S, et al. Investigations on the passivity of iron in borate and phosphate buffers, pH 8.4 [J]. Corros. Sci., 2006, 48: 3472-3488
[11] Borrás C A, Romagnoli R, Lezna R O. In-situ spectroelectrochemistry (UV – visible and infrared) of anodic films on iron in neutral phosphate solutions [J]. Electrochim. Acta, 2000, 45: 1717-1725
[12] Zhao J M, Zuo Y. Effects of three anions on pit propagation of mild steel in NaHCO3-NaC solutions [J]. J. Chin. Soc. Corros. Prot., 2004, 24(3):174-178
(赵景茂,左禹. 三种缓蚀性阴离子对碳钢在NaHCO3-NaCl溶液中点蚀的抑制作用 [J]. 中国腐蚀与防护学报,2004, 24(3):174-178)
[13] Bastos A C, Ferreira M G, Sim?es A M. Corrosion inhibition by chromate and phosphate extracts for iron substrates studied by EIS and SVET [J]. Corros. Sci., 2006, 48: 1500–1512
[14] Wang H T, Zhao J M, Zuo Y, et al. The effects of some anions on metastable pitting of 316L stainless steel [J]. J. Chin. Soc. Corros. Prot., 2002,2(4): 202-206
(王海涛,赵景茂,左禹等. 几种阴离子对316L不锈钢亚稳态孔蚀行为的影响 [J]. 中国腐蚀与防护学报, 2002, 2(4): 202-206)
[15] Sinko J. Challenges of chromate inhibitor pigments replacement in organic coatings [J]. Prog. Org. Coat., 2001, 42: 267-282
[16] Fujioka E, Nishihara H, Aramaki K. The inhibition of passive film breakdown on iron in a borate buffer solution containing chloride ions by mixtures of hard and soft base inhibitors [J]. Corros. Sci., 1996, 3(10): 1669-1679
[17] Yamaguchi M, Nishihara H, Aramaki K. The inhibition of pit growth on an iron surface in a borate buffer solution containing chloride ion by inhibitors classified as soft bases in the HSAB principle [J]. Corros. Sci., 1995, 37(4): 571-585
[18] Zhu Y B, Shen Z C, Zhang C F, et al. Electrochemical Data Handbook [M]. Changsha: Hunan Science and Technology Press, 1984
(朱元保,沈子琛,张传福等. 电化学数据手册 [M]. 长沙: 湖南科学技术出版社, 1984)
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[7] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[8] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[9] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[10] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[11] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[12] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[13] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[14] 付安庆,赵密锋,李成政,白艳,朱文军,马磊,熊茂县,谢俊峰,雷晓维,吕乃欣. 激光表面熔凝对超级13Cr不锈钢组织与性能的影响研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[15] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.