Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (6): 507-512    
  研究报告 本期目录 | 过刊浏览 |
工艺参数对AZ31镁合金磷化膜耐蚀性能及表面形貌的影响
崔学军1,2,刘春海1,2,李明田1,2,林修洲1,2,刘元洪3
1. 四川理工学院 材料腐蚀与防护四川省重点实验室 自贡 643000
2. 四川理工学院材料与化学工程学院 自贡 643000
3. 四川科宏石油天然气工程有限公司 成都 610213
EFFECTS OF PARAMETERS ON SURFACE MORPHOLOGY AND CORROSION RESISTANCE OF PHOSPHATE FILM FOR AZ31 MAGNESIUM ALLOY
CUI Xuejun1,2, LIU Chunhai1,2, LI Mingtian1,2, LIN Xiuzhou1,2, LIU Yuanhong3
1. Materials Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000
2. College of Materials and Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000
3. Sichuan Kehong Oil and Gas Engineering Co. Ltd., Chengdu 510213
全文: PDF(1567 KB)  
摘要: 

以磷酸二氢锰和无氟添加剂为主要成分,通过化学沉积的方法在AZ31镁合金表面获得了均匀且无氟、无镍和无铬的磷化膜。采用硫酸铜点蚀测试、扫描电镜及电化学极化曲线表征手段,详细地研究了成膜温度、游离酸及酸比工艺对AZ31镁合金磷化膜耐蚀性能及表面形貌的影响。结果表明:在成膜温度95℃,游离酸FA 4-5, 酸比TA/FA 15~20的条件下,可获得晶粒<20 μm的致密磷化膜,耐CuSO4点蚀时间>5 min。磷化AZ31镁合金的自腐蚀电位比未处理基体正移110 mV,自腐蚀电流密度降低3个数量级。成膜温度<75℃时,不能得到完整的磷化膜;成膜温度75℃时,随着成膜温度的升高,磷化膜颗粒得到细化,膜层更加致密,进而有效地抑制AZ31镁合金的阳极溶解和阴极析氢,提高了耐蚀性能。但升高成膜温度,加速磷酸盐的水解,容易产生大量的磷化渣,而游离酸的控制,能够有效减少磷化渣的产生,降低生产成本,提高膜层质量。

关键词 镁合金磷酸盐转化膜无铬成膜温度游离酸    
Abstract

A phosphate solution, free of chromate, fluorides and nitrite, was prepared to form the corrosion resistance conversion film on the AZ31 magnesium alloy surface via chemical deposition, and the effects of film-forming temperature and free acid on surface morphology and corrosion resistance of the film were investigated via CuSO4 pitting corrosion test, scanning electron microscopy and potentiodynamic polarization curves. The denser film with grain of 20 μm, whose time of CuSO4 pitting corrosion resistance is longer than 5 min, is obtained on the following process: film-forming temperature 95℃, FA 4~5, ratio of TA/FA 15~20. The Ecorr with the film is shifted positively 110 mV(vs. SCE), the Icorr is decreased approximately by three orders compared with that of the bare substrate AZ31 respectively. The results show also that the existence of the film has a great inhibitive action on anodic dissolution and restraint action on the cathodic hydrogen evolution. The dense film is not obtained when the film-forming temperature is lower than 75℃, but increasing with the film-forming temperature, the grain is refiner and the film is denser, which can improve corrosion resistance performance of AZ31 magnesium alloy. Unfortunately, higher film-forming temperature is easy to accelerate hydrolysis of the phosphate and cause plenty of residues phosphide. But the decreasing of residues phosphide can be effectively controlled by controlling the adding amount of the free acid, which further improve quality of the film and decrease the cost.

Key wordsmagnesium alloy    phosphate film    environment friendly    film-forming temperature    free acid
收稿日期: 2011-11-24     
ZTFLH:  TG174  
基金资助:

四川省教育厅重点项目(12ZA261)、 四川理工学院人才引进基金(2011RC02)和材料腐蚀与防护四川省重点实验室开放基金(2011CL08和2011CL01)资助

通讯作者: 崔学军     E-mail: cxj2046@163.com
Corresponding author: CUI Xuejun     E-mail: cxj2046@163.com
作者简介: 崔学军,男,1978年生,博士,副教授,研究方向为金属材料腐蚀与防护

引用本文:

崔学军,刘春海,李明田,林修洲,刘元洪. 工艺参数对AZ31镁合金磷化膜耐蚀性能及表面形貌的影响[J]. 中国腐蚀与防护学报, 2012, 32(6): 507-512.
CUI Xuejun, LIU Chunhai, LI Mingtian, LIN Xiuzhou, LIU Yuanhong. EFFECTS OF PARAMETERS ON SURFACE MORPHOLOGY AND CORROSION RESISTANCE OF PHOSPHATE FILM FOR AZ31 MAGNESIUM ALLOY. Journal of Chinese Society for Corrosion and protection, 2012, 32(6): 507-512.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I6/507

 


[1] Gao L L, Zhang C H, Zhang M L, et al. Phytic acid conversion coating on Mg-Li alloy [J]. J. Alloys Compd., 2009, 485(1-2): 789-783

[2] Jiang Y Y, Zhou H T, Zeng S M. Microstructure and properties of oxalate conversion coating on AZ91D magnesium alloy [J]. Trans. Nonferrous Met. Soc. China, 2009, 19: 1416-1422

[3] Montemor M F, Pinto R, Ferreira M G S. Chemical composition and corrosion protection of silane films modified with CeO2 nanoparticles [J]. Electrochim. Acta, 2009, 54: 5179-5189

[4] Cui X J, Zhou J X, Wang X C. Preparation, structure and corrosion resistance of chrome-free phophate film for magnesium alloy AZ31[J]. J. Chin. Soc. Corros. Prot., 2012, 32(1): 13-17

(崔学军, 周吉学, 王修春. 镁合金AZ31表面无铬磷酸盐转化膜的制备、结构及性能 [J]. 中国腐蚀与防护学报, 2012, 32(1): 13-17)

 

[5] Wang C, Zhu S L, Jiang F, et al. Cerium conversion coatings for AZ91D magnesium alloy in ethanol solution and its corrosion resistance [J]. Corros. Sci., 2009, 51: 2916-2923

[6] Liu Y, Wei Z L, Yang F W, et al. Effect of electrolyte constitutes on properties of anodic coatings of magnesium alloys [J]. J. Chin. Soc. Corros. Prot., 2011, 31(4) 255-259

(刘妍, 卫中领, 杨富巍等. 电解液组成对镁合金阳极氧化膜性能的影响[J]. 中国腐蚀与防护学报, 2011, 31(4): 255-259)

[7] Zeng R C, Lan Z D, Chen J, et al. Progress of chemical conversion coatings on magnesium alloys [J]. Trans. Nonferrous Met. Soc. China, 2009, 19(3): 397-344 ~

(曾荣昌, 兰自栋, 陈君等. 镁合金表面化学转化膜的研究进展[J]. 中国有色金属学报, 2009, 19(3): 397-344)

[8] Mosialek M, Mordarski G, Nowak P, et al. Phosphate-permanganate conversion coatings on the AZ81 magnesium alloy: SEM, EIS and XPS studies [J]. Surf. Coat. Tech., 2011, 206: 51-62

[9] Zhou W Q, Shan D Y, Han E H, et al. A preparation method on free-chrome conversion coating for magnesium alloy and its solution [P]. China, CN 1475602A, 2004. 2

(周婉秋, 单大勇, 韩恩厚等.镁合金无铬化学转化膜制备方法及所用成膜溶液[P]. 中国, CN 1475602A, 2004. 2)

[10] Zhou W Q, Shan D Y, Han E H, et al. Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy [J]. Corros Sci., 2008, 50(2): 329-337

[11] Liu F, Shan D Y, Han E H, et al. Effect of Ca2+ on phosphate conversion coating on magnesium alloy [J]. Trans. Nonferrous Met. Soc. China, 2008, 18(10): 1825-1830

(刘锋, 单大勇, 韩恩厚等. 钙对镁合金表面锰系转化膜的影响[J]. 中国有色金属学报, 2008, 18(10): 1825-1830)

[12] Liu F, Shan D Y, Zeng R C, et al. Effect of Mn2+ consumption in phosphate conversion solution on performance of phosphorized films on AZ31 magnesium alloy surface [J]. Corros. Sci. Prot. Technol., 2010, 22(5): 377-379

(刘锋, 单大勇, 曾荣昌等. AZ31变形镁合金锰系转化膜溶液中锰消耗对膜性能的影响[J]. 腐蚀科学与防护技术, 2010, 22(5): 377-379)

[13] Niu L Y, Lin J X, Li Y, et al. Improvement of anticorrosion and adhesion to magnesium alloy by phosphate coating formed at room temperature [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1356-1360

[14] Niu L Y. Investigation on film formation mechanism, microstructure and performances of complex zinc phosphate coatings of magnesium alloy [D]. Changchun: Jilin University, 2006: 54-130

(牛丽媛. 镁合金锌系复合磷化膜成膜机理、微观结构及性能的研究[D]. 吉林: 吉林大学, 2006: 54-130)

[15] Wang J F. Phosphate solution and process for magnesium alloy [P]. China, CN 101096761A, 2008. 1

(王江锋. 镁合金表面磷化溶液及其磷化处理工艺[P]. 中国, CN 101096761A, 2008. 1)

 

[16] Yang X J, Wei R J, Jin H L, et al. A modification treatment method of phosphate conversion coating for magnesium alloy surface [P]. China, CN 1861843A, 2006. 11

(杨湘杰, 危仁杰, 金华兰等. 镁合金磷酸盐表面改性处理方法[P]. 中国, CN 1861843A, 2006. 11)

[17] Ishizaki T, Shigematsu I, Saito N. Anticorrosive magnesium phosphate coating on AZ31 magnesium alloy [J]. Surf. Coat. Technol., 2009, 203: 2288-2291

[18] Song Y W, Shan D Y, Chen R S, et al. Formation mechanism of phosphate conversion film on Mg-8.8Li alloy [J]. Corros. Sci., 2009, 51: 62-69

[19] Chen J, Song Y W, Shan D Y, et al. In situ growth of Mg-Al hydrotalcite conversion film on AZ31 magnesium alloy [J]. Corros. Sci., 2011, 53: 3281-3288

[20] Mosialek M, Mordarski G, Nowak P, et al. Phosphate-permanganate conversion coatings on the AZ81 magnesium alloy: SEM, EIS and XPS studies [J]. Surf. Coat. Technol., 2011, 206: 51-62

[21] Cui X J, Wang X C, Lu J F, et al. A chromium-free phosphate solution and process for magnesium alloy [P]. China Patent, CN 201010123677.6, 2010. 10 ~

(崔学军, 王修春, 卢俊峰等. 一种镁合金无铬磷化溶液及其处理工艺[P]. 中国, CN 201010123677.6, 2010.10)

[22] Zeng R C, Lan Z D. Influence of bath temperature of conversion treatment process on corrosion resistance of zinc calcium phosphate conversion film on AZ31 magnesium alloy [J]. Trans. Nonferrous Met. Soc. China, 2010, 20(8): 1461-1466 ~

(曾荣昌, 兰自栋. 镀液温度对AZ31镁合金表面锌钙系磷酸盐转化膜耐蚀性的影响[J]. 中国有色金属学报, 2010, 20(8): 1461-1466)

[23] Wu C S. Corrosion and Protection: Chemical Conversion Coatings [M]. Beijing: Chemical Industry Press, 1988: 133-154

(吴纯素. 腐蚀与防护全书-化学转化膜[M]. 北京: 化学工业出版社, 1988: 133-154)

[24] Cheng Y L, Qin T W, Wang H M, et al. Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK96 magnesium alloys [J]. Trans. Nonferrous Met. Soc. China, 2009, 19: 517-524

[25] Zhang W, Wen T. Surface treatment of AZ31 magnesium alloy with KH-550 silane [J]. Paint Coat. Ind., 2009, 39(5): 63-65

(张微, 文涛. KH-550型硅烷增强处理AZ31镁合金[J]. 涂料工业, 2009, 39(5): 63-65)

[26] Song G L, Xu Z Q. The surface, microstructure and corrosion of magnesium alloy AZ31 sheet[J]. Electrochim. Acta, 2010, 55: 4148-4161
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[5] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[6] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[7] 郏义征, 赵明君, 程世婧, 王保杰, 王硕, 盛立远, 许道奎. 模拟人体体液中镁合金的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[8] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[9] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[10] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[11] 樊志民, 于锦, 宋影伟, 单大勇, 韩恩厚. 镁合金点蚀的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[12] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[13] 陈琳, 钟福荣, 昝金龙. 复合电解液中AZ31B镁合金的放电特性及电压滞后[J]. 中国腐蚀与防护学报, 2018, 38(2): 197-202.
[14] 崔学军, 平静. 微弧氧化及其在镁合金腐蚀防护领域的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 87-104.
[15] 王海媛, 卫英慧, 杜华云, 刘宝胜, 郭春丽, 侯利锋. 绿色缓蚀剂SDDTC对AZ31B镁合金的缓蚀作用及吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 62-67.