Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (2): 146-150    
  研究报告 本期目录 | 过刊浏览 |
690合金在NaCl溶液中的电化学行为研究
乔岩欣,任爱,刘飞华
苏州热工研究院有限公司 苏州 215004
ELECTROCHEMICAL BEHAVIOR OF ALLOY 690 IN NaCl SOLUTION
QIAO Yanxin, REN Ai, LIU Feihua
Suzhou Nuclear Power Research Institute, Suzhou 215004
全文: PDF(569 KB)  
摘要: 利用动电位极化曲线、电化学阻抗谱和电流-时间响应曲线对690合金在NaCl溶液中的电化学行为进行了研究。结果表明,690合金在不同浓度的NaCl溶液中均表现出阳极钝化现象,腐蚀速率随NaCl浓度的升高而增加。钝化后690合金的耐蚀性提高,在1%NaCl溶液中生成的钝化膜较致密。钝化时间小于1096 s时690合金在0.1%NaCl中的腐蚀电流密度低于其在1%NaCl中的腐蚀电流密度,当钝化时间大于1096 s时690合金在0.1%NaCl中的腐蚀电流密度反而高于其在1%NaCl中的腐蚀电流密度。
关键词 690合金腐蚀电化学钝化膜    
Abstract:The electrochemical behavior of alloy 690 in NaCl were investigated by means of potentiodynamic polarization curves, electrochemical impendence spectrum and current-time transient curves. Alloy 690 exhibited anodic passivation behavior in tested solution. The corrosion rate of alloy 690 increased with the increase of NaCl concentration in tested solution. The passive film of alloy 690 formed in 1% NaCl was relatively compact compared with that in 0.1% NaCl at applied potential of 0.2 V. The corrosion current density of alloy 690 in 1% NaCl (Ip1) was higher than that in 0.1% NaCl (Ip2) when passivation periods less than 1096 s. The value of I p1 was lower than Ip2 when passivation periods longer than 1096 s.
Key wordsalloy 690    corrosion    electrochemical    passive film
收稿日期: 2010-12-07     
ZTFLH: 

TG172.5

 
基金资助:

江苏省自然科学基金项目(BK2011317)和广东核电集团项目(CGNPC2010S096-09)资助

通讯作者: 乔岩欣     E-mail: qiaoyanxin2009@cgnpc.com.cn
Corresponding author: QIAO Yanxin     E-mail: qiaoyanxin2009@cgnpc.com.cn
作者简介: 乔岩欣,男,1980年生,博士,高级工程师,研究方向为核电站结构材料的腐蚀和应力腐蚀

引用本文:

乔岩欣,任爱,刘飞华. 690合金在NaCl溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2012, 32(2): 146-150.
QIAO Yan-Xin, REN Ai, LIU Fei-Hua, ZHENG Yu-Gui. ELECTROCHEMICAL BEHAVIOR OF ALLOY 690 IN NaCl SOLUTION. J Chin Soc Corr Pro, 2012, 32(2): 146-150.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I2/146

[1] Dong Y, Gao Z Y. Development of nuclear power industry and research of alloy Inconel 690 in China [J]. Special Steel Technol.,2004, 9(3): 45-48

    (董毅, 高志远.我国核电事业的发展与Inconel690合金的研制[J]. 特钢技术, 2004, 9(3):45-48)

[2] Huang F, Wang J Q, Han E H, et al. Effect of Cl- concentration and temperature on the corrosion behavior of alloy 690 in borate buffer-solution[J]. Acta Metall. Sin., 2011, 47(7):809-815

    (黄发, 王俭秋, 韩恩厚等.硼酸缓冲溶液中Cl-浓度和温度对690合金腐蚀行为的影响[J].金属学报, 2011, 47(7): 809-815)

[3] Hu Y S, Wang J Q, Ke W, et al. Corrosion behavior of alloy 690TT in high temparature lead-containing caustic solution[J]. J.Chin. Soc. Corros. Prot., 2010, 30(6): 427-432

    (胡轶嵩,王俭秋, 柯伟等. 690TT合金在高温含铅碱液中的腐蚀行为[J].中国腐蚀与防护学报, 2010, 30(6): 427-432)

[4] Yu Y F, Wang H, Hu S L. Some corrosion problems of alloy 690TT in special environments[J]. J. Chin. Soc. Corros. Prot., 2010,30(3): 251-256

    (余远方, 王辉, 胡石林.690TT合金在特殊环境下的腐蚀问题[J]. 中国腐蚀与防护学报, 2010, 30(3):251-256)

[5] Liu S E, Zhu Z Y, Ke W, et al. The influence of chemical composition and microstructure on corrosion behavior[J]. Corros.Sci. Prot. Technol., 1995, 7(2): 146-150

    (刘素娥, 朱自勇,柯伟等. 690合金的成分和显微组织对腐蚀行为的影响[J].腐蚀科学与防护技术, 1995, 7(2): 146-150)

[6] Rooyen D V. Review of the stress corrosion cracking of Inconel 600[J]. Corrosion, 1975, 31: 327

[7] Terachi T, Fujii K, Arioka K. Microstructure characterization of SCC crack tip and oxide film for SUS 316 stainless steel in simulated PWR primary water at 320 degree C[J].J. Nucl. Sci. Technol., 2005, 42: 225-232

[8] Panter J, Viguier B, Cloue J M, et al. Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600[J]. J. Nucl. Mater., 2006, 348: 213-221

[9] Machet A, Galtayries A, Zanna S L K, et al. XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy[J]. Electrochim. Acta,2004, 49: 3957-3964

[10] Lemire R J, McRae G A. The corrosion of Alloy 690 in high-temperature aqueous media-thermodynamic considerations[J]. J.Nucl. Mater., 2001, 294: 141-147

[11] Bosch R W, Feron D, Celis J P.Electrochemistry in Light Water Reactors, Reference Electrodes,Measurement, Corrosion and Tribocorrosion Issues[M]. Cambridge:Woodhead Publishing in Materials, 2007

[12] Gavele J R, Torrest R M, Carranza R M. Passivity breakdown, its relation to pitting and stress-corrosion-cracking processes[J]. Corros. Sci., 1990, 31: 563-571

[13] Pistorius P C, Burstein G T. Growth of corrosion pits on stainless steel in chloride solution containing dilute sulphate[J].Corros. Sci., 1992, 33: 1885-1897

[14] Chen Y Y, Chou L B, Shih H C. Factors affecting the electrochemical behavior and stress corrosion cracking of Alloy 690 in chloride environments[J]. Mater. Chem. Phys., 2006, 97: 37-49

[15~]} Briceno D G, Castano M L, Garcia M S. Stress corrosion cracking susceptibility of steam generator tube materials in AVT (all volatile treatment) chemistry contaminated with lead[J]. Nucl. Eng. Des., 1996, 165: 161-169

[16] Qiao Y X, Zheng Y G, Ke W, et al. Electrochemical behavior of high nitrogen stainless steel in acidic solutions[J].Corros. Sci., 2009, 51: 979-986

[17] Li C, Du C W, Li Z Y, et al. Characteristic of electrochemical impedance spectroscopy for X100 pipeline steel in water-saturated acidic soil[J]. J. Chin. Soc. Corros. Prot., 2011,31(5): 377-380

     (李超, 杜翠薇, 刘智勇等.X100管线钢在水饱和酸性土壤中的电化学阻抗谱特征[J].中国腐蚀与防护学报, 2011, 31(5): 377-380)

[18] Hassan H H. Effect of chloride ions on the corrosion behavior of steel in 0.1 M citrate[J]. Electrochim. Acta, 2005, 51:526-535

[19] Szklarska S Z. Pitting corrosion of aluminum[J]. Corros.Sci., 1998, 41: 1743-1767

[20] Newman R C, Shahrabi T. The effect of alloyed nitrogen or dissolved nitrate ions on the anodic behavior of austenitic stainless steel in hydrochloric acid[J]. Corros. Sci., 1987, 27:827-838

[21] Hoar T P. The production and breakdown of the passivity of metals[J]. Corros. Sci., 1967, 7: 341-355

[22] Wallinder D, Pan J, Leygraf C, et al. EIS and XPS study of surface modification of 316LVM stainless steel after passivation[J]. Corros. Sci., 1998, 41: 275-289\par
[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[11] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[12] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[13] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[14] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[15] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.