Please wait a minute...
中国腐蚀与防护学报  2010, Vol. 30 Issue (3): 241-245    
  研究报告 本期目录 | 过刊浏览 |
成膜电位对X70管线钢在NaHCO3溶液中钝化膜电化学性能的影响
贾志军,李晓刚,梁平,王力伟  
北京科技大学新材料技术研究院 北京 100083
ELECTROCHEMICAL CHARACTERIZATION OF PASSIVE FILM FORMED UNDER DIFFERENT POTENTIAL CONDITION ON X70 PIPELINE STEEL IN NaHCO3 SOLUTION
JIA Zhijun, LI Xiaogang, LIANG Ping, WANG Liwei
Advanced Material & Technology Institute, University of Science and Technology Beijing, Beijing 100083
全文: PDF(529 KB)  
摘要: 

采用动电位极化、电化学阻抗和电容测量等方法研究了X70管线钢在 0.5 mol?L-1 NaHCO3溶液中的电化学行为及生成钝化膜的电化学性能。极化曲线结果表明,X70钢在该溶液中有着明显的钝化行为;电化学阻抗表明,随着成膜电位正移,X70钢表面形成的钝化膜更加致密,均匀性更好;电容测量表明,X70钢在不同成膜电位下形成的钝化膜在 -0.20~0.80 V扫描范围内为n型半导体,并且随着成膜电位的正移,空间电荷层更厚,施主密度逐渐减小,耐蚀性更好。

关键词 X70管线钢钝化膜电化学阻抗Mott-Schottky曲线耐蚀性    
Abstract

The passive behavior and electrochemical characterization of passive film formed under different potential on X70 pipeline steel in NaHCO3 solution were discussed by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and capacitance measurements. It is shown that the X70 pipeline steel has a wide passive anodic region between -50 mV to 900 mV. EIS result indicates that the passive film is much denser and uniform with the increasing potential. Mott-Schottky analysis presents that the passive films on X70 pipeline steel in 0.5 mol?L-1 NaHCO3 solution exhibits n-type semiconductive character in potential region of -0.2 V to 0.8 V. The donor density of the passive film decreases and the thickness of the space-charge layers increases with the increasing potential. The corrosion resistance of the passive film increases with the forming potential.

Key wordsX70 pipeline steel    passive film    EIS    Mott-Schottky plot    corrosion resistance
收稿日期: 2009-02-16     
ZTFLH: 

TG172

 
基金资助:

国家高技术研究发展计划项目(2009AA063405-04)和国家科技基础条件平台建设项目(2005DKA10400)资助

通讯作者: 李晓刚     E-mail: lixiaogang99@263.net
Corresponding author: LI Xiaogang     E-mail: lixiaogang99@263.net
作者简介: 贾志军,男,1983生,博士生,研究方向为金属材料的腐蚀与防护

引用本文:

贾志军,李晓刚,梁平,王力伟. 成膜电位对X70管线钢在NaHCO3溶液中钝化膜电化学性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(3): 241-245.
GU Zhi-Jun, LIANG Beng, LI Xiao-Gang. ELECTROCHEMICAL CHARACTERIZATION OF PASSIVE FILM FORMED UNDER DIFFERENT POTENTIAL CONDITION ON X70 PIPELINE STEEL IN NaHCO3 SOLUTION. J Chin Soc Corr Pro, 2010, 30(3): 241-245.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2010/V30/I3/241

[1] Li D G, Zhu J W, Zheng M S, et al.Photo-electrochemical characterization of passive film formed on X80 pipeline steel [J]. Acta Metall. Sin., 2008, 44(6): 739-744
[2] (李党国,朱杰武,郑茂盛等,X80管线钢钝化膜的光电化学性能 [J]. 金属学报, 2008,44(6):739-744)
[3] Liang P, Li X G, Du C W, et al. Influence of chloride ions on the corrosion resistance of X80 pipeline steel in NaHCO3 solution [J]. J. Univ. Sci. Technol.Beijing, 2008, 30(7): 735-739
[4] (梁平,李晓刚,杜翠微等,Cl-对X80管线钢在NaHCO3溶液中腐蚀性为的影响 [J]. 北京科技大学学报,2008,30(7):735-739)
[5] Li D G, Feng Y R, Bai Z Q, et al. Calculation of diffusivity of point defects in passive film formed on X80 pipeline steel [J]. Chin.J Appl. Chem., 2008, 25(9): 1007-1010
[6] (李党国,冯耀荣,白真权等,X80管线钢钝化膜内点缺陷扩散系数的计算 [J].应用化学,2008, 25(9):1007-1010)
[7] Cheng Y F, Luo J L. A comparison of the pitting susceptibility and semiconducting properties of the passive films on carbon steel in chromate and bicarbonate solutions [J]. Appl. Surf. Sci, 2000, 167(1-2):113-121
[8] Cheng Y F, Luo J L. Electronic structure and pitting susceptibility of passive film on carbon steel [J]. Electrochim. Acta, 44(17): 2947-2957
[9] Glass G K, Hassanein A M, Buenfeld N R. Obtaining impedance information on the steel-concrete interface [J]. Corrosion, 1998, 54(11):887-897
[10] Cheng Y F, Luo J L. Passivity and pitting of carbon steel in chromate solutions [J]. Electrochim. Acta, 1999, 44(26):4795-2804
[11] Arutunow A, Darowicki K. DEIS assessment of AISI 304 stainless steel dissolution process in conditions of intergranular corrosion [J]. Electrochim. Acta, 2008, 53(13):4387-4395
[12] Krakowiak S, Darowicki K, Slepski P. Impedance investigation of passive 304 stainless steel in the pit pre-initiation state [J]. Electrochim. Acta, 2005, 50(13):2699-2704
[13] Alves V A, Brett C M A. Characterisation of passive films formed on mild steels in bicarbonate solution by EIS [J]. Electrochim. Acta, 2002, 47(13-14):2081-2091
[14] Sikora J, Sikora E, MacDonald D D. The electronic structure of the passive film on tungsten [J]. Electrochim. Acta, 2000, 45(12):1875-1883
[15] Rangel C M, Silva T M, Da Cunha Belo M. Semiconductor electrochemistry approach to passivity and stress corrosion cracking susceptibility of stainless steels [J]. Electrochim. Acta, 2005, 50(25-26):5076-5082
[16] Zeng Y M, Luo J L, Norton P R. A study of semiconducting properties of hydrogen containing passive films [J]. Thin Solid Films, 2004, 460(1-2):116-124
[17] Ningshen S, Kamachi Mudali U, Mittal V K, et al. Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels [J]. Corros. Sci, 2007, 49(1):481-496
[18] Hamadou L, Kadri A, Benbrahim N. Characterization of passive films formed on low carbon steel in borate buffer solution (pH 92) by electrochemical impedance spectroscopy [J]. Appl. Surf. Sci, 2005, 252(5):1510-1519
[19] Rangel C M, Silva T M, Da Cunha Belo M. Semiconductor electrochemistry approach to passivity and stress corrosion cracking susceptibility of stainless steels [J]. Electrochim. Acta, 2005, 50 (25-26):5076-5082
[20] Zeng Y M, Luo J L, Norton P R. A study of semiconducting properties of hydrogen containing passive films [J]. Thin Solid Films, 2004, 460(1-2):116-124
[21] Ningshen S, Kamachi M U, Mittal V K, et al. Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels [J]. Corros. Sci, 2007, 49(1):481-496
[22] Gercasi C A, Folquer M E, Vallejo A E, et al. Electron transfer across anodic films formed on tin in carbonate-bicarbonate buffer solution [J]. Electrochim.Acta, 2005, 50(5):1113-1119
[23] Zeng Y M, Luo J L. Electronic band structure of passive film on X70 pipeline steel [J]. Electrochim.Acta, 2003, 48(23):3551-3562
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[3] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[4] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[5] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[6] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[7] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[8] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[9] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[10] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[11] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[12] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[13] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[14] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[15] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.