Please wait a minute...
中国腐蚀与防护学报  2008, Vol. 28 Issue (4): 219-224     
  研究报告 本期目录 | 过刊浏览 |
镁合金表面微弧氧化陶瓷膜的腐蚀失效机理
王立世;潘春旭;蔡启舟;魏伯康
武汉大学物理科学与技术学院
Study on Corrosion Failure Mechanism of Microarc Oxidation Coatings Formed on AZ91D Magnesium Alloy
;;;
全文: PDF(1442 KB)  
摘要: 本文评价了镁合金两类微弧氧化(Microarc Oxidation-MAO)膜层的耐蚀性,并分析了其在5wt.%NaCl水溶液中的腐蚀失效机理。研究发现:磷酸盐系膜层(P-film)和硅酸盐系膜层(Si-film)均可极大提高AZ91D合金的耐蚀性能,但硅酸盐系膜层的耐蚀性要优于磷酸盐系膜层的耐蚀性;依据Si-film和P-film在在5wt.%NaCl溶液中不同浸泡时间的自腐蚀电位(OCP)、腐蚀形貌和交流阻抗谱(EIS)数据的变化,MAO膜层的腐蚀失效主要经历了以下四个阶段:溶液渗入多孔层的孔隙;一些孔隙内被腐蚀产物充满;微孔底部的阻挡层逐渐被腐蚀;阻挡层失效,腐蚀过程趋于稳定。
关键词 微弧氧化镁合金腐蚀失效    
Abstract:The corrosion resistance of the two types of microarc oxidation (MAO) coatings was evaluated by virtue of total immersion test and salt spray. Then the mechanism of the coating corrosion failure in 5wt.%NaCl aqueous solution was studied through the impedance and open-circuit potential (OCP) measurements. The results showed that both phosphate coating (P-film) and silicate coating (Si-film) could enhance the corrosion resistance of AZ91D alloy significantly and that the later was more effective. Based on the variations of OCP and corrosion morphology of P-film and Si-film immersed in 5wt.%NaCl aqueous solution with different time, the analytic results of electrochemical impedance spectroscopy (EIS) data for Si-film showed the corrosion failure process had experienced the following four steps: the rapid initial penetration of the solution into the porous outer layer; the filling of corrosion products in certain pores; the gradual corrosion of the barrier layer located in the bottom of pores; the stable corrosion process with the failure of barrier layer.
Key wordsmicroarc oxidation    magnesium alloy    corrosion failure
收稿日期: 2006-11-22     
ZTFLH:  TG146.2  
通讯作者: 王立世   

引用本文:

王立世; 潘春旭; 蔡启舟; 魏伯康 . 镁合金表面微弧氧化陶瓷膜的腐蚀失效机理[J]. 中国腐蚀与防护学报, 2008, 28(4): 219-224 .
. Study on Corrosion Failure Mechanism of Microarc Oxidation Coatings Formed on AZ91D Magnesium Alloy. J Chin Soc Corr Pro, 2008, 28(4): 219-224 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2008/V28/I4/219

[1]Yerokhin AL,Nie X,Leyland A,et al.Plasma electrolysis for sur-face engineering[J].Surf.Coat.Technol.,1999,122:73-79
[2]Jiang B L,Zhang S F,Wu G J.The study of the corrosion resis-tance of the ceramic coatings formed by micro-arc oxidation onthe Mg-base alloy[J].J.Chin.Soc.Corros.Prot.,2002,22(5):300-303(蒋百灵,张淑芬,吴国建.镁合金微弧氧化陶瓷层耐蚀性的研究[J].中国腐蚀与防护学报,2002,22(5):300-303)
[3]Wang Y H,Wang J,Zhang J B.Influence of micro-arc oxidationtreatment on the corrosion behavior of AZ91D magnesium alloy[J].J.Chin.Soc.Corros.Prot.,2006,26(4):216-220(王燕华,王佳,张际标.微弧氧化处理对镁合金腐蚀行为的影响[J].中国腐蚀与防护学报,2006,26(4):216-220)
[4]Emley E F.Principles of Magnesium Technology[M].New York:Pergamon Press,1966:670-735
[5]Barton T F,Johnson C B.The effect of electrolyte on the anodizedfinish of a magnesium alloy[J].Plat.Surf.Finish.,1995,(5):138-141
[6]Khaselev O,Weiss D,Yahalom J.Anodizing of pure magnesiumin KOH-aluminate solutions under sparking[J].J.Electrochem.Soc.,1999,146(5):1757-1761
[7]Khaselev O,Weiss D,Yahalom J.Structure and composition ofanodic film formed on binary Mg-Al alloys in KOH-aluminate so-lutions under continuous sparking[J].Corros.Sci.,2001(7),43:1295-1307
[8]Shi Z M,Song G L,Atrens A.Influence of theβphase on thecorrosion performance of anodised coatings on magnesium-alu-minium alloys[J].Corros.Sci.,2005,47(11):2760-2777
[9]Wang L S,Cai Q Z,Wei B K.Introduction of several foreign mi-cro-arc oxidation processes on magnesium alloys[J].Mater.Prot.,2004,(7):61(王立世,蔡启舟,魏伯康.国外几个镁合金微弧氧化工艺介绍[J].材料保护,2004,37(7):61)
[10]Cai Q Z,Wang L S,Wei B K.Electrochemical performance ofmicroarc oxidation films formed on AZ91D magnesium alloy in sil-icate and phosphate electrolytes[J].Surf.Coat.Technol.,2006,200(12-13):3727-3733
[11]Zao S P,Lu S K,Hao W J.Titanium Alloy and Its Surface Treat-ment[M].Haerbin:Haerbin Institute of Technology Press,2003:183-257(赵树萍,吕双坤,郝文杰.钛合金及其表面处理[M].哈尔滨:哈尔滨工业大学出版社,2003:183-257)
[12]Birss V,Xia S,Yue R,et al.Characterization of oxide filmsformed on Mg-based WE43 alloy using AC/DC anodization in sili-cate solutions[J].J.Electrochem.Soc.,2004,B151(1):1-10a
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[5] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[6] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[7] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[8] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[9] 郏义征, 赵明君, 程世婧, 王保杰, 王硕, 盛立远, 许道奎. 模拟人体体液中镁合金的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[10] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[11] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[12] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[13] 樊志民, 于锦, 宋影伟, 单大勇, 韩恩厚. 镁合金点蚀的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[14] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[15] 郝利新, 贾瑞灵, 张慧霞, 张伟, 赵婷, 翟熙伟. 7A52铝合金双丝MIG焊接头的不均匀性对其表面微弧氧化膜腐蚀防护作用的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 219-225.