Please wait a minute...
中国腐蚀与防护学报  2008, Vol. 28 Issue (2): 76-80     
  研究报告 本期目录 | 过刊浏览 |
X70管线钢近中性环境氢致开裂与阳极溶解的关系
邵绪分
北京科技大学
Relations between Hydrogen-induced Cracking and Anode Dissolution of Pipeline Steel X70 in Near-neutral Environment
北京科技大学
全文: PDF(1127 KB)  
摘要: 采用慢速率拉伸试验(SSRT)方法及电化学测量技术,研究了阴极电位下X70钢在某种近中性介质中的应力腐蚀开裂(SCC)机理。试验表明,在近中性介质中,随着电位的降低,管线钢的SCC敏感性增强,但当电位低于某一范围后,SCC敏感性减弱;随着溶液pH值的降低,管线钢的腐蚀速率增大,敏感电位区间负移。分析表明,在近中性介质中,管线钢应力腐蚀开裂主要受阳极溶解和氢致开裂两种机理的联合作用,氢的渗入可能与氢的还原过程及管线钢阳极溶解密切相关。适宜的电位可以使阳极溶解和氢的联合作用增强,增强应力腐蚀开裂倾向。
关键词 应力腐蚀开裂阳极溶解氢致开裂X70管线钢    
Abstract:Stress corrosion cracking (SCC) mechanism of pipeline steel X70 has been investigated in a solution of near-neutral pH by means of slow strain rate test and electrochemical test technology. The experiments showed that SCC susceptibility increased as the applied potential shifted in the cathodic direction, but when the potential was lower than the extent of susceptive potential, SCC susceptibility depressed. Besides, the susceptive potential became more negative as the pH value decreased and corrosion rate increased. The analysis showed that hydrogen-induced cracking together with anode dissolution played an important role in the SCC of pipeline steel X70. However, anode dissolution and hydrogen-induced cracking did not work separately. Hydrogen permeation was related to the process of hydrogen deoxidization and the anode dissolution at specimen surface. Relevant potential was able to make the two mechanisms combined to cause much more serious SCC.
Key wordsStress Corrosion Cracking    Anode dissolution    Hydrogen-induced Cracking
收稿日期: 2006-09-12     
通讯作者: 邵绪分     E-mail: shao818@sina.com

引用本文:

邵绪分 . X70管线钢近中性环境氢致开裂与阳极溶解的关系[J]. 中国腐蚀与防护学报, 2008, 28(2): 76-80 .

链接本文:

https://www.jcscp.org/CN/Y2008/V28/I2/76

[1]Parkins R N,Blanchard Jr.W K,Delanty B S.Transgranularstress corrosion cracking of high pressure pipelines in contact withsolutions of near neutral pH[J].Corrosion,1994,50(5):394-408
[2]Parkins R N.A review of stress corrosion cracking of high pressuregas pipelines[R].in Corrosion/2000,NACE International,Hous-ton,TX,2000,363
[3]Guo H,Li G F,Cai X,et al.Effect of applied potentials on stresscorrosion cracking of X70 pipeline steel in near neutral pH solu-tions[J].J.Chin.Soc.Corros.Prot.,2004,24(4):208-212(郭浩,李光福,蔡珣等.外加电位对X70管线钢在近中性pH值溶液中的应力腐蚀开裂的影响[J].中国腐蚀与防护学报,2004,24(4):208-212)
[4]Sutcliffe J M,Fessler R R,Boyd W K et al.Stress corrosion crack-ing of carbon steel in carbonate solutions[J].Corrosion,1972,28(8):313-320
[5]Li M X,Wang R,Li P L.Crack propagation quantitative modelsof X70 pipeline steel in the synthetic soil solution[J].J.Chin.Soc.Corros.Prot.,2004,24(3):163-166(李明星,王荣,李鹏亮.X70管线钢在模拟土壤介质中裂纹扩展量化模型[J].中国腐蚀与防护学报,2004,24(3):163-166)
[6]Wang Z F,Atrens A.Initiation of stress corrosion cracking forpipeline steels in a carbonate-bicarbonate solution[J].Metall.Mater.Trans.A:,1996,27A(9):2686-2691
[7]Kushida T,Nose K,Asahi H,et al.Effects of metallurgical fac-tors and test conditions on near neutral pH SCC of pipeline steels[R].Houston,TX:NACE International,2001,1213
[8]Rebak R B,Xia Z,Safruddin R et al.Effect of solution composi-tion and electrochemical potential on stress corrosion cracking ofX-52 pipeline steel[J].Corrosion,1996,52(5):396-405
[9]Parkins R N,Blanchard W K,Delanty B S.Transgranular stresscorrosion cracking of high-pressure pipelines in contact with solu-tions of near neutral pH[J].Corrosion,1994,50(5):394-408
[10]Gu B,Yu W Z,Luo J L,et al.Transgranular stress corrosioncracking of X280 and X52 pipeline steels in dilute aqueous solu-tion with near-neutral pH[J].Corrosion,1999,55(3):312-319
[11]Li H L.Highlights of research and application of gas transmittingpipeline[J].Welded Pipe,2000,23(3):43-38(李鹤林.天然气输送钢管研究与应用中的几个热点问题[J].焊管.2000,23(3):43-38)
[12]Harle B A,Beavers J A,Jaske C E.Technical note:Low pHstress corrosion crack propagation in APIX65 line pipe steel[J].Corrosion,1993,49(10):861-863
[13]Zhao Y,Wang R.An investigation on mechanical behaviors of pipeline X70 after electrochemical hydrogen charging[J].J.Chin.Soc.Corros.Prot.,2004,24(5):293-296(赵颖,王荣.X70管线钢电化学充氢后的力学行为[J].中国腐蚀与防护学报,2004,24(5):293-296)
[14]Zha Q X,et al.Electrode Process Kinetics Introduction(the Third Edition)[M].Beijing:Science Press,2002,238(查全性等.电极过程动力学导论(第三版)[M].北京:科学出版社,2002,238)
[1] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[4] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[5] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[6] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[7] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[8] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[9] 廖梓含, 宋博, 任泽, 何川, 陈旭. X70钢及其焊缝在Na2CO3+NaHCO3溶液中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[10] 郭强, 陈长风, 李世瀚, 于浩波, 李鹤林. 冷焊修复层在H2S环境下的开裂行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 167-173.
[11] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[12] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[13] 罗金恒,胥聪敏,杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[14] 宋博强,陈旭,马贵阳,刘睿. SRB对X70管线钢在近中性pH溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 212-218.
[15] 赵书振,许立宁,窦娟娟,常炜,路民旭. 醋酸对X70管线钢CO2湿气顶部腐蚀行为影响[J]. 中国腐蚀与防护学报, 2016, 36(3): 231-237.