Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (2): 167-173    DOI: 10.11902/1005.4537.2017.101
  研究报告 本期目录 | 过刊浏览 |
冷焊修复层在H2S环境下的开裂行为研究
郭强(), 陈长风, 李世瀚, 于浩波, 李鹤林
中国石油大学 (北京) 理学院材料科学与工程系 北京 102249
Cracking Behavior of Cold-welding Layer on A350 LF2 Steel in H2S Environment
Qiang GUO(), Changfeng CHEN, Shihan LI, Haobo YU, Helin LI
Department of Materials Science and Engineering, China University of Petroleum-Beijing, Beijing 102249, China
全文: PDF(6704 KB)   HTML
摘要: 

研究了不同工艺条件下A350 LF2钢冷焊修复层的组织特征以及在NACE标准实验条件下的硫化物应力开裂 (SSC) 和氢致开裂 (HIC) 特征。结果表明,低的热输入量、短持续时间和高占空比条件下容易产生未熔合焊接缺陷,Ar气输入量较大则容易产生焊接气泡。H2S腐蚀实验结果表明,冷焊修复层对SSC不敏感,但是却极易在焊接缺陷处产生HIC裂纹,裂纹在未熔合区以及焊缝气泡的边缘萌生,并沿着焊接熔合线在焊缝一侧扩展。适当的冷焊修复工艺参数能消除焊接缺陷,有利于提高焊缝的抗HIC开裂性能。

关键词 冷焊修复焊接未熔合焊接气泡硫化物应力开裂(SSC)氢致开裂(HIC)    
Abstract

The microstructures of the cold-weld layers on A350 LF2 steel prepared with different process parameters was characterized and then their sulfide stress cracking (SSC)- and hydrogen induced cracking (HIC)-behavior was assessed corresponding to NACE standard experimental conditions. Results show that the welding process with low heat input, short duration and high duty cycle can lead to incomplete fusion, while high influx of Ar is easy to generate bubbles. The cold-weld layer is not sensitive to SSC, however it is easy to produce HIC cracks at welding defects. The cracks initiate in the non-fusion zone and the edge of weld bubbles, and then propagate along welding line. Appropriate parameters can eliminate welding defects, thereby, the prepared cold weld layer may possess good resistance to HIC.

Key wordscold-welding repairing    incomplete fusion    welding bubble    sulfide stress cracking (SSC)    hydrogen induced cracking (HIC)
收稿日期: 2017-06-29     
基金资助:国家自然科学基金 (51134011和51301200)
作者简介:

作者简介 郭强,男,1972年生,博士,教授级高级工程师

引用本文:

郭强, 陈长风, 李世瀚, 于浩波, 李鹤林. 冷焊修复层在H2S环境下的开裂行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 167-173.
Qiang GUO, Changfeng CHEN, Shihan LI, Haobo YU, Helin LI. Cracking Behavior of Cold-welding Layer on A350 LF2 Steel in H2S Environment. Journal of Chinese Society for Corrosion and protection, 2018, 38(2): 167-173.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.101      或      https://www.jcscp.org/CN/Y2018/V38/I2/167

图1  冷焊修补焊接试件示意图
Item Welding current / A Duration / s Duty ratio / % Ar flow / Lmin-1
1 140 0.03 20 4.5
2 140 0.05 30 5.0
3 140 0.07 40 5.5
4 140 0.09 50 6.0
5 160 0.03 30 5.5
6 160 0.05 20 6.0
7 160 0.05 20 5.0
8 160 0.07 50 4.5
9 160 0.09 40 5.0
10 180 0.03 40 6.0
11 180 0.05 50 5.5
12 180 0.07 20 5.0
13 180 0.07 30 5.0
14 180 0.09 30 4.5
15 200 0.03 50 5.0
16 200 0.05 40 4.5
17 200 0.07 30 5.5
18 200 0.09 20 6.0
表1  焊接工艺参数优化
图2  基材A350 LF2金相组织照片
图3  焊缝未熔合区域和焊缝区域内气孔的金相显微组织
图4  冷焊修补不同区域的金相照片
图5  冷焊修复焊缝SSC测试结果
图6  冷焊修复中的未熔合所导致的HIC裂纹
图7  HIC裂纹断口形貌
图8  冷焊修复中的气孔所导致的HIC裂纹
[1] Xian N, Jiang F, Shi D Y, at el. Sulfide stress corrosion behavior of carbon steel coiled tubing under H2S environment[J]. Corros. Prot., 2012, S1: 142(鲜宁, 姜放, 施岱艳等. H2S环境下碳钢连续油管的SSC行为研究[J]. 腐蚀与防护, 2012, S1: 142)
[2] Liu R, Li J, Liu Z, et al.Effect of pH and H2S concentration on sulfide stress corrosion cracking (SSCC) of API 2205 duplex stainless steel[J]. Int. J. Mater. Res., 2015, 106(6): 608
[3] Liu Z Y, Wang X Z, Liu R K, et al.Electrochemical and sulfide stress corrosion cracking behaviors of tubing steels in a H2S/CO2, annular environment[J]. J. Mater. Eng. Perform., 2014, 23(4):1279
[4] Hao W K, Liu Z Y, Du C W, et al.Stress corrosion cracking behavior of 35CrMo steel in acid hydrogen sulfide solutions[J]. Chin. J. Mech. Eng., 2014, 50(4): 39(郝文魁, 刘智勇, 杜翠薇等. 35CrMo钢在酸性H2S环境中的应力腐蚀行为与机理[J]. 机械工程学报, 2014, 50(4): 39)
[5] Cai X W, Ge L, Chen C F, et al.Corrosion behavior of P110 tube and casing steel in the environment of sulfur deposition[J]. J. Chin. Soc. Corros. Prot., 2010, 30: 161(蔡晓文, 戈磊, 陈长风等. 油套管用P110钢在元素硫环境中腐蚀规律的研究[J]. 中国腐蚀与防护学报, 2010, 30: 161)
[6] Wan H, Liu Z, Du C, et al.Stress corrosion behavior of X65 steel welded joint in marine environment[J]. Int. J. Electrochem. Sci., 2015, 10(10): 8437
[7] Zeng T, Yu C Y.Discussion on sulphide stress corrosion cracking[J]. Total Corros. Control, 2011, 25(4): 9(曾彤, 余存烨. 硫化物应力腐蚀破裂探讨[J]. 全面腐蚀控制, 2011, 25(4): 9)
[8] Zhang Q, Meng L D, Yang J W, et al.High energy pulse precision cold-welding technology for repairing local surface default of metal parts[J]. China Surf. Eng., 2011, 24(1): 79(张庆, 孟令东, 杨军伟等. 高能脉冲精密冷补技术用于修复零件表面局部缺损[J]. 中国表面工程, 2011, 24(1): 79)
[9] Lu Y H, Huang D.Engine remanufacturing technology and industrial development[J]. Equip. Manuf. Technol., 2010, 12: 99(陆宇衡, 黄德. 发动机再制造技术及产业发展[J]. 装备制造技术, 2010, 12: 99)
[10] Matsunawa A, Seto N, Kim J D, et al.Observation of keyhole and molten pool behaviour in high power laser welding: Mechanism of porosity formation and its suppression method[J]. Trans. JWRI, 2001, 30(1): 13
[11] Seto N, Katayama S, Matsunawa A.Formation mechanism of porosity in high power YAG laser welding [A]. Proceedings of ICALEO 2000[C]. Dearborn, 2000
[12] Matsunawa A, Seto N, Kim J D, et al.Dynamics of keyhole and molten pool in high-power CO2 laser welding [A]. Advanced High-Power Lasers and Applications[C]. Osaka, 1999
[13] Hirth J P. Effects of hydrogen on the properties of iron and steel[J]. Metall. Mater. Trans., 1980, 11(6A):861
[14] Wang Z H, Wang Y Q.The effect of martensite layer at weld bond on the fracture toughness of 9%Ni steel joints welded by austenitic electrodes[J]. J. Beijing Univ. Technol., 1992, 18(3): 49(王智慧, 王月琴. 用奥氏体焊条焊接9%Ni钢马氏体层组织及接头的断裂韧性[J]. 北京工业大学学报, 1992, 18(3): 49)
[15] Luu W C, Wu J K.Effects of sulfide inclusion on hydrogen transport in steels[J]. Mater. Lett., 1995, 24(1): 175
[1] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[2] 史显波, 王威, 严伟, 单以银, 杨柯. M/A组元对高强度管线钢抗H2S性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 129-136.
[3] 王斌, 周翠, 李良君, 胡红梅, 朱加祥. X100管线钢焊接接头抗HIC性能研究[J]. 中国腐蚀与防护学报, 2014, 34(3): 237-242.
[4] 董希青,黄彦良. 不锈钢在海洋环境中的环境敏感断裂研究进展[J]. 中国腐蚀与防护学报, 2012, 32(3): 189-194.
[5] 姚学军,王俭秋,左景辉,韩恩厚,柯伟. 微观组织对X52钢抗H2S腐蚀和开裂性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(2): 95-101.
[6] 饶思贤,万章,宋光雄,张铮,钟群鹏. 基于规则的晶间腐蚀和氢致开裂的失效模式诊断[J]. 中国腐蚀与防护学报, 2011, 31(4): 260-264.
[7] 镇凡;刘静;黄峰;程吉浩;李翠玲;郭斌;徐进桥. 夹杂物对X120管线钢氢致开裂的影响[J]. 中国腐蚀与防护学报, 2010, 30(2): 145-149.
[8] 邵绪分 . X70管线钢近中性环境氢致开裂与阳极溶解的关系[J]. 中国腐蚀与防护学报, 2008, 28(2): 76-80 .
[9] 刘智勇; 李明; 李晓刚 . 16Mn(HIC)钢在硫化氢环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2006, 26(6): 360-365 .
[10] 董绍华; 吕英民; 李启楷 . 氢致裂纹扩展的分形研究进展[J]. 中国腐蚀与防护学报, 2001, 21(3): 188-192 .
[11] 王燕斌; 王胜; 颜练武 . 塑性变形在氢致断裂中的作用[J]. 中国腐蚀与防护学报, 2000, 20(4): 248-252 .
[12] 程玉峰;杜元龙. A3钢在含Fe~(3+)的盐酸溶液中的脆断机理[J]. 中国腐蚀与防护学报, 1995, 15(2): 81-86.