Please wait a minute...
中国腐蚀与防护学报  2008, Vol. 28 Issue (2): 70-75     
  研究报告 本期目录 | 过刊浏览 |
氢对纳米不锈钢涂层钝化膜性能的影响
叶威
中科院金属研究所
Effects of Hydrogen on Passive Film of Nanocrystallized Stainless Steel Coating
中科院金属研究所
全文: PDF(1523 KB)  
摘要: 用动电位极化、恒电位极化、Mott-Schottky测量、X射线光电子能谱(XPS)分析及扫描电子显微镜(SEM)等手段研究了氢对纳米不锈钢涂层在0.5 mol/L NaCl + 0.05 mol/L H2SO4溶液中腐蚀行为及钝化膜性能的影响。结果表明,氢与涂层表面吸附的OH-反应使OH- 吸附减少,从而延迟了钝化膜的形成;氢使钝化膜的成分发生改变,钝化膜中的OH-/O2-的比率升高,因而钝化膜的点蚀敏感性增加;同时,氢促使钝化膜的介电常数增大,空间电荷电容增大,载流子密度增加,从而降低了钝化膜的稳定性。随着充氢量的增加,钝化膜的维钝电流和载流子密度随之增加,说明钝化膜的稳定性和涂层耐蚀性能都随之降低。
关键词 纳米不锈钢涂层钝化膜电子性能    
Abstract:The effects of hydrogen on corrosion behavior and passive film of nano-crystalline stainless steel coat?鄄ing in 0.5 mol/L NaCl + 0.05 mol/L H2SO4 solution were investigated using electrochemical technique, X-ray photoelectron spectroscopy (XPS) analysis and scanning electron microscopy (SEM) observation. During the for?鄄mation process of passive film, the hydrogen could slow down the formation of the passive film because the exis?鄄tence of hydrogen would reduce the adsorbed OH- ions on the coating surface. XPS analysis results indicated that the OH-/O2- ratio in the passive film was changed after hydrogen charging. The susceptibility to pitting of the charged coating was enhanced because of the increment of OH-/O2- ratio in the passive film.Mott-Schottky analy?鄄sis showed that the hydrogen protons could enhance the dielectric constant of the passive film and account for the increase in capacitance and carrier density of passive films. In addition, the passive current density decreased and the carrier densities increased with the increment of hydrogen charging current.
Key words
收稿日期: 2006-07-21     
通讯作者: 叶威     E-mail: weiye@imr.ac.cn

引用本文:

叶威 . 氢对纳米不锈钢涂层钝化膜性能的影响[J]. 中国腐蚀与防护学报, 2008, 28(2): 70-75 .

链接本文:

https://www.jcscp.org/CN/Y2008/V28/I2/70

[1]Yang M Z,Luo J L,Yang Q,et al.Effects of hydrogen on semi-conductivity of passive films and corrosion behavior of 310 stain-less steel[J].J.Electrochem.Soc.,1999,146:2107-2122
[2]Yu J G,Luo J L,Norton P R.Effects of hydrogen on the electronicproperties and stability of the passive films on iron[J].Appl.Surf.Sci.,2001,177:129-138
[3]Hasegawa M,Osawa M.Anomalous corrosion of hydrogen-contain-ing ferritic steels in aqueous acid solution[J].Corrosion,1983,39:115-120
[4]Yang M Z,Qiao J L,Chiovelli S,et al.Critical hydrogen charging conditions for martensite transformation and surface cracking intype 304 stainless steel[J].Scr.Mater.,1999,40:1209-1214
[5]Pyun S I,Lim C,Oriani R A.The role of hydrogen in the pitting of passivating films on pure iron[J].Corros.Sci.,1992,33:437-444
[6]Ryan M P,Laycock N J,Issaacs H S,et al.Corrosion pits in thinfilms of stainless steel[J].J.Electrochem.Soc.,1999,146:91-97
[7]Wang X Y,Li.D Y.The influence of electrolyte reduction poten-tial on weld corrosion[J].Electrochim.Acta,2002,47:3939-3947
[8]Ye W,Li Y,Wang F H.Effects of nanocrystallization on the cor-rosion behavior of 309 stainless steel[J].Electrochim.Acta,2006,51:4426-4432
[9]Cao C N.The Principle of the Corrosion Electrochemistry[M].Beijing:Chemical Industry Press,2004(曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2004)
[10]Femenia M,Pan J,Leygraf C,et al.In situ study of selective dis-solution of duplex stainless steel 2205 by electrochemical scanningtunneling microscopy[J].Corros.Sci.,2001,43:1939-1951
[11]Okamoto G,Shibata T.Stability of passive stainless steel in rela-tion to the potential of passivation treatment[J].Corros.Sci.,1970,10:371-378
[12]Engell H J.Stabilityand breakdown phenomena of passivatingfilms[J].Electrochim.Acta,1977,22:987-993
[13]Fugassi P,Haney E G.Titanium Science and Technology(JaffeeR I,Burte H M,eds)[M].New York:Plenum Press,1973,2611
[14]McBee C L,Kruger J.Localized Corrosion[A].Corrosion/74[C].Houston,TX:NACE,1974,252
[15]Yu J G,Luo J L,Norton P R.Electrochemical investigation ofthe effects of hydrogen on the stability of the passive film on iron[J].Electrochim.Acta,2002,47:1527-1536
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] 赵东杨, 周宇, 王冬颖, 那铎. 磷化处理对核主泵螺栓断裂行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[4] 张琦超, 黄彦良, 许勇, 杨丹, 路东柱. 高放射性核废料钛储罐深地质环境中氢吸收及氢脆研究进展[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[5] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[6] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[7] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[8] 袁玮,黄峰,甘丽君,戈方宇,刘静. 显微组织对X100管线钢氢致开裂及氢捕获行为影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[9] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[10] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[11] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[12] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[13] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[14] 丰涵,宋志刚,吴晓涵,李惠,郑文杰,朱玉亮. 022Cr25Ni7Mo4N双相不锈钢选择性腐蚀行为与两相组织的关系研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[15] 童海生,孙彦辉,宿彦京,庞晓露,高克玮. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.