Please wait a minute...
中国腐蚀与防护学报  1998, Vol. 18 Issue (3): 233-236    
  研究报告 本期目录 | 过刊浏览 |
氢对310不锈钢点蚀敏感性的影响
乔利杰;曾一民;褚武扬
北京科技大学材料物理系;北京100083;北京科技大学材料物理系;北京100083;北京科技大学材料物理系;北京100083
EFFECTS OF HYDROGEN ON PITTING SUSCEPTIBILITY OF TYPE 310 STAINLESS STEEL
QIAO Li-jie ZENG Yi-min CHU Wu-yang (Department of Materials Physics; University of Science and Technology Beijing; Beijing 100083)
全文: PDF(983 KB)  
摘要: 用ASTM-G48标准研究了氢对310不锈钢点蚀的影响。对于不充氢的样品,经过6天的时间也不发生点蚀,而对于预充氢的样品,几分钟后就有大量点蚀。点蚀的密度和大小均随着氢含量的增加而增加。点蚀坑的直径D与浸泡时间t的对数呈直线关系:D=αlnt+β。α值随氢含量增加而增大。
关键词 点蚀不锈钢    
Abstract:Type 310 stainless steel foils were precharged with hydrogen at different current densities. The effects of hydrogen on the pitting susceptibility were investigated by carrying out the ASTM-G48 standard ferric chloride tests. The variations of pit density, pit size distribution, average pit diameter and apparent pit area percentage with hydrogen charging current density and immersion time were statistically examined. Hydrogen in 310 stainless steel greatly promoted the pitting initiation and the pit growth. Average pit diameter D increased linearly with logarithm of immersion time t, i.e., D=αlnt+β. The value of constant a increased with the rise of charging current density. The hydrogen interactions with defects both in surface film and metal substrate were used to explain its deleterious effects on the resistance of pitting corrosion. It was considered that hydrogen accelerated pitting corrosion mainly by formation of positive charge regions around defects in the surface film.
Key wordsHydrogen    Pitting susceptibility    Stainless steel    Defects
收稿日期: 1998-06-25     

引用本文:

乔利杰;曾一民;褚武扬. 氢对310不锈钢点蚀敏感性的影响[J]. 中国腐蚀与防护学报, 1998, 18(3): 233-236.
. EFFECTS OF HYDROGEN ON PITTING SUSCEPTIBILITY OF TYPE 310 STAINLESS STEEL. J Chin Soc Corr Pro, 1998, 18(3): 233-236.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y1998/V18/I3/233

1 Qiao L J, Chu W Y, Hsiao C M. Scripta. Metall., 1988, 22:627
2 Qiao L J, Luo J L, Mao X. J. Mater. Sci. Let. 1997, 416
3 Hasegawa M, Osawa M. Corrosion, 1980, 36:67
4 Says A A. Corrosion, 1974, 30:37
5 Qiao L J, Mao X, Chu W Y. Metall. Mater. Trans. 1995, A26A: 1667
6 Qiao L J, Chu W Y, Mao X. Corrosion, 1996, 52:276
7 Ruetschi R, Giovanoli R. J. Electrochem. Soc. 1988, 135:266
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] 赵东杨, 周宇, 王冬颖, 那铎. 磷化处理对核主泵螺栓断裂行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[6] 张琦超, 黄彦良, 许勇, 杨丹, 路东柱. 高放射性核废料钛储罐深地质环境中氢吸收及氢脆研究进展[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[7] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[8] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[9] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[10] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[11] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[12] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[13] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[14] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[15] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.