Please wait a minute...
中国腐蚀与防护学报  1996, Vol. 16 Issue (1): 9-14    
  研究报告 本期目录 | 过刊浏览 |
缓蚀剂阳极脱附现象的研究──Ⅲ.缓蚀剂阳极脱附机制
王佳;曹楚南
中国科学院海洋研究所;中国科学院金属腐蚀与防护研究所
ANODIC DESORPTION OF INHIBITORS Ⅲ.MECHANISM OF INHIBITOR DESORPTION
Wang Jia; Cao Chunan(Institute of Oceanology;Chinese Academy of Sciences)(Institute of Corrosion and Protection of Metals;Chinese Academy of Sciences;The Laboratory of Corrosion Sciences)
全文: PDF(521 KB)  
摘要: 用电化学方法研究了缓蚀剂发生阳极脱附的机制。实验中发现缓蚀剂复盖度在低于脱附电位时保持不变,达到脱附电位后迅速降低。脱附电位则随缓蚀剂抑制能力的增强、浓度增加和氯离子的存在而正移。然而,缓蚀剂层对阳极溶解的阻力在脱附电位之前就逐渐降低。依据这些结果提出离子化金属粒子对吸附层的冲击导致缓蚀剂发生阳极脱附,而大量缓蚀剂脱附则发生在达到脱附电位后、缓蚀剂再吸附修补吸附层速度低于脱附速度时。
关键词 脱附缓蚀剂机制    
Abstract:The mechanism of inhibitor desorption from an anodically polarized electrode was studied on basis of electrochemical measurements. It was indicated that the inhibitor coverage on electrode surface remained unchanged in the range of applied potential lower than the desorption potential (Edes), and decreased rapidly as it reached the Edes. It was also showed that the inhibitor with stronger adsorbility possessed a relatively high desorption potential and that increasing inhibitor concentration and addition of chloride also resulted in a positive shift in Edes. The resistance of adsorbed layer to anodic dissolution, however,had begun to decrease gradually even before the potential reached the Edes. According to the analysis mentioned above, an assumption was proposed that the inhibitor desorption was caused by the lash of dissolving metal ions against the adsorbed inhibitor layer, and the large scale desorption occurred only after attainment of the desorption potential because the reabsorption rate of inhibitor for mending the inhibitor layer destroyed was lower than the desorption rate.
Key words Desorption    Inhibitor    Mechanism
收稿日期: 1996-02-25     
基金资助:国家自然科学基金

引用本文:

王佳;曹楚南. 缓蚀剂阳极脱附现象的研究──Ⅲ.缓蚀剂阳极脱附机制[J]. 中国腐蚀与防护学报, 1996, 16(1): 9-14.
. ANODIC DESORPTION OF INHIBITORS Ⅲ.MECHANISM OF INHIBITOR DESORPTION. J Chin Soc Corr Pro, 1996, 16(1): 9-14.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y1996/V16/I1/9

[1]GomerR.Chemisorption,NewYork:AcademicPress;1978.1412MoorsGE.J.Appl.Phys,1961,32:12413SwansonLW;GomerR.J.Chem.Phys,1963,38:28134BockrisJO’M,ReddyAKN.ModernElectrochemistry;NewYork:PlenumPress,1970.7915王佳.博士学位论文,沈阳,1990.786王佳,曹楚南,陈家坚等.中国腐蚀与防护学报,1995;15(4):2417曹楚南.腐蚀科学与防护技术,1990;2(1):1
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[5] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[6] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[7] 曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[8] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[9] 王毅,张盾. 铋系可见光催化海洋防污材料研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 375-386.
[10] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[11] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[12] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[13] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[14] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[15] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.