Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (6): 1764-1772     CSTR: 32134.14.1005.4537.2025.044      DOI: 10.11902/1005.4537.2025.044
  研究报告 本期目录 | 过刊浏览 |
TC4钛合金在含S2- 海水中的腐蚀磨损行为研究
王杰1,2, 赵平平2, 王春婷2, 竺婷婷2, 杨丽景2(), 宋振纶2
1 宁波大学材料科学与化学工程学院 宁波 315211
2 中国科学院宁波材料技术与工程研究所 海洋关键材料全国重点实验室 宁波 315201
Synergistic Tribo-corrosion Behavior of TC4 Ti-alloy in Artificial Seawater Containing Sulfur Ions
WANG Jie1,2, ZHAO Pingping2, WANG Chunting2, ZHU Tingting2, YANG Lijing2(), SONG Zhenlun2
1 Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
2 State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
引用本文:

王杰, 赵平平, 王春婷, 竺婷婷, 杨丽景, 宋振纶. TC4钛合金在含S2- 海水中的腐蚀磨损行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1764-1772.
Jie WANG, Pingping ZHAO, Chunting WANG, Tingting ZHU, Lijing YANG, Zhenlun SONG. Synergistic Tribo-corrosion Behavior of TC4 Ti-alloy in Artificial Seawater Containing Sulfur Ions[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1764-1772.

全文: PDF(7456 KB)   HTML
摘要: 

硫化物在特殊海洋环境(如深海热液区、工业污染区等)中十分常见,本研究通过电化学技术原位监测TC4钛合金的腐蚀磨损过程,并利用台阶仪与3D轮廓仪对磨损后的体积进行量化,结合扫描电子显微镜和能谱仪观测微观形貌及成分,讨论S2-浓度对TC4钛合金在3.5%NaCl溶液中腐蚀-磨损动态损伤过程中的影响。结果表明,TC4钛合金的总腐蚀磨损量随着S2-浓度的增加显著增大,且磨损机制从单纯磨料磨损转变为磨料、疲劳磨损共存的复合机制。在腐蚀磨损过程中,当S2-浓度从0 mmol/L增加到60 mmol/L时,TC4钛合金的开路电位降低了400 mV左右。同时,腐蚀电流密度增大了近2个数量级。腐蚀磨损交互量化分析表明,腐蚀促进磨损分量占比从2.94%提升到5.59%。海水环境中的S2-破坏了钛合金表面钝化膜,加速局部腐蚀并加剧磨痕区域的二次溶解,最终导致TC4钛合金在腐蚀磨损过程中的耦合损伤效应显著增强。

关键词 TC4钛合金S2-腐蚀磨损耦合损伤电化学    
Abstract

Sulfide is very common in special marine environments, such as microbial metabolism process, deep-sea hydrothermal area, industrial pollution area etc. In this study, the corrosion and wear process of TC4 Ti-alloy was monitored in situ by electrochemical technology, and the wear volume was quantified by step profiler and 3D profilometer. The microstructure and composition were characterized by scanning electron microscope and energy dispersive spectrometer. The effect of sulfur ion concentration on the corrosion-wear dynamic damage process of TC4 Ti-alloy in 3.5%NaCl solution was systematically revealed. The results show that the total corrosion wear amount of TC4 Ti-alloy increases significantly with the increase of sulfur ion concentrations, and the wear mechanism changes from pure abrasive wear to the composite mechanism of abrasive and fatigue wear. During the corrosion wear process, when the sulfur ion concentrations increased from 0 to 60 mmol/L, the OCP of TC4 Ti-alloy decreased by about 400 mV. At the same time, the corrosion current density increased by nearly 2 orders of magnitude. The interactive quantitative analysis of corrosion and wear shows that the proportion of corrosion-promoted wear components increased from 2.94% to 5.59%. The sulfur ion in the 3.5%NaCl solution destroyed the passivation film on the surface of the TC4 Ti-alloy, accelerated the local corrosion and aggravated the secondary dissolution of the wear scar area, which eventually led to the significant enhancement of the coupling damage effect of TC4 Ti-alloy during the corrosion wear process. This study provides an important reference for the durability design of titanium alloy components in marine equipment operating in a sulfur-containing medium environment.

Key wordsTC4 Ti-alloy    sulfur ions    tribo-corrosion    coupling damage    electrochemistry
收稿日期: 2025-02-13      32134.14.1005.4537.2025.044
ZTFLH:  TG174  
基金资助:国家重点研发计划(2022YFB3808800);宁波市重点科技项目(2024Z130)
通讯作者: 杨丽景,E-mail:yanglj@nimte.ac.cn,研究方向为金属腐蚀与防护
Corresponding author: YANG Lijing, E-mail: yanglj@nimte.ac.cn
作者简介: 王 杰,男,2000年生,硕士生
图1  TC4钛合金显微组织的SEM像
图2  TC4钛合金在含有不同浓度S2-的3.5%NaCl溶液中静态腐蚀和动态腐蚀磨损条件下的动电位极化曲线
Concentration ofS2- / mmol·L-1EcorrV

Icorr

μA·cm-2

Static corrosion0-0.330.08
20-0.740.50
40-0.870.89
60-0.951.35
Tribo-corrosion0-0.816.91
20-1.2110.4
40-1.3913.5
60-1.4016.6
表1  TC4钛合金在含有不同浓度S2-的3.5%NaCl溶液中的动电位极化曲线拟合结果
图3  TC4钛合金在含有不同浓度S2-的3.5%NaCl溶液中腐蚀磨损条件下的原位开路电位变化曲线
图4  TC4钛合金在含有不同浓度S2-的3.5%NaCl溶液中的摩擦系数曲线
图5  TC4钛合金在含不同浓度S2-的3.5%NaCl溶液中摩擦后的3D轮廓图像
Concentration of S2-mmol·L-1Max depthμmSectional areaμm2
026.410915
2024.011424
4027.412138
6028.112674
表2  TC4钛合金在含不同浓度S2-的3.5%NaCl溶液中腐蚀磨损后磨痕参数
图6  TC4钛合金在含有不同浓度S2-的3.5%NaCl溶液中摩擦后的腐蚀磨损表面形貌
图7  TC4钛合金在含有不同浓度S2-的3.5%NaCl溶液中摩擦后磨损区域的EDS分析结果
Concentration of S2- / mmol·L-1VTVWVCΔVWΔVC
032.730.40.020.961.32
2034.231.10.051.211.84
4035.132.30.081.431.29
6037.934.90.152.120.73
表3  TC4钛合金在不同浓度S2-的3.5%NaCl溶液中腐蚀磨损后各体积损失分量
图8  TC4钛合金在含有不同浓度S2-的3.5%NaCl溶液中腐蚀磨损后各体积损失占总体积损失的比例
[1] Yang X W, Lin B, Zhang H L, et al. Influence of stress on the corrosion behavior of Ti alloys: A review [J]. J. Alloy. Compd., 2024, 985: 173346
[2] Liu R, Cui Y, Zhang B, et al. Unveiling the effect of hydrostatic pressure on the passive films of the deformed titanium alloy [J]. Corros. Sci., 2021, 190: 109705
[3] Traverso P, Canepa E. A review of studies on corrosion of metals and alloys in deep-sea environment [J]. Ocean Eng., 2014, 87: 10
[4] Feng S Y, Zhou Z H, Yang L L, et al. Electrochemical and wear behavior of TC4 alloy in marine environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1243
[4] (冯少宇, 周兆辉, 杨兰兰 等. 海洋环境下TC4合金的电化学及磨损行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1243)
[5] Zhang W Y, Ai Y B, Zhang W D. Analysis of tensile damage of titanium alloy in seawater environment based on deep learning [J]. Mater. Today Commun., 2024, 39: 108854
[6] Zhang H X, Zhang F, Hao F Y, et al. Stress corrosion behavior and mechanism of Ti6321 alloy with different microstructures in stimulated deep-sea environment [J]. Corros. Sci., 2024, 233: 112059
[7] Wasmund K, Mußmann M, Loy A. The life sulfuric: microbial ecology of sulfur cycling in marine sediments [J]. Environ. Microbiol. Rep., 2017, 9: 323
[8] Wang Y, Liu Y H, Mu X L, et al. Effect of environmental factors on material transfer in thin liquid film during atmospheric corrosion process in marine environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1015
[8] (汪 洋, 刘元海, 慕仙莲 等. 海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 1015)
[9] Yuan S J, Pehkonen S O. Surface characterization and corrosion behavior of 70/30 Cu-Ni alloy in pristine and sulfide-containing simulated seawater [J]. Corros. Sci., 2007, 49: 1276
[10] Qin T, Lin X, Yu J, et al. Performance of different microstructure on electrochemical behaviors of laser solid formed Ti-6Al-4V alloy in NaCl solution [J]. Corros. Sci., 2021, 185: 109392
[11] Boakye S Y, Kim K, Kim J, et al. A microstructural, mechanical and electrochemical/stress corrosion cracking investigation of a Cr-modified Ti-6Al-4V alloy [J]. J. Mater. Res. Technol., 2023, 25: 354
[12] Leon A, Levy G K, Ron T, et al. The effect of strain rate on stress corrosion performance of Ti6Al4V alloy produced by additive manufacturing process [J]. J. Mater. Res. Technol., 2020, 9: 4097
[13] Munirathinam B, Narayanan R, Neelakantan L. Electrochemical and semiconducting properties of thin passive film formed on titanium in chloride medium at various pH conditions [J]. Thin Solid Films, 2016, 598: 260
[14] Nady H, El-rabiei M M, Samy M. Corrosion behavior and electrochemical properties of carbon steel, commercial pure titanium, copper and copper-aluminum-nickel alloy in 3.5% sodium chloride containing sulfide ions [J]. Egyptian J. Petrol., 2017, 26: 79
[15] Pang J J, Blackwood D J. Corrosion of titanium alloys in high temperature near anaerobic seawater [J]. Corros. Sci., 2016, 105: 17
[16] Yang X J, Du C W, Wan H X, et al. Influence of sulfides on the passivation behavior of titanium alloy TA2 in simulated seawater environments [J]. Appl. Surf. Sci., 2018, 458: 198
[17] Zhao P P, Han E H, Song Y W, et al. Synergistic effect of F- ions and scratch on the dynamic corrosion behavior of ZTi60 [J]. Corros. Sci., 2022, 203: 110355
[18] Song W, Chen Q, Yu S R, et al. Fretting wear behavior of TC4 alloy in different environmental media [J]. Rare Met. Mater. Eng., 2020, 49: 2393
[18] (宋 伟, 尘 强, 俞树荣 等. TC4合金在不同环境介质中微动磨损行为研究 [J]. 稀有金属材料与工程, 2020, 49: 2393)
[19] Xie H M, Li G M, Hu L Y, et al. Effects of load and potential on corrosion and wear behavior of Ti-6Al-3Nb-2Zr-1Mo alloy in seawater [J]. Mater. Rep., 2025, 39(6): 201
[19] (谢浩民, 李光明, 胡凌越 等. 载荷和电位对Ti-6Al-3Nb-2Zr-1Mo合金在海水中腐蚀磨损行为的影响 [J]. 材料导报, 2025, 39(6): 201)
[20] Zhou W H, Song J, Chen Z H, et al. Effect of low temperature degradation on tribological properties of YSZ thermal barrier coatings [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 261
[20] (周文晖, 宋 健, 陈泽浩 等. 水热腐蚀老化对热障涂层的摩擦磨损性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 261)
[21] Wang Z G, Huang W J, Li Y, et al. Tribocorrosion behaviour of a biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in Ringer's solution [J]. Mater. Sci. Eng., 2017, 76C: 1094
[22] Azumi K, Nakajima M, Okamoto K, et al. Dissolution of Ti wires in sulphuric acid and hydrochloric acid solutions [J]. Corros. Sci., 2007, 49: 469
[23] Huang S S, Ma Y J, Zhang S L, et al. Influence of alloying elements partitioning behaviors on the microstructure and mechanical properties in α + β titanium alloy [J]. Acta Metall. Sin., 2019, 55: 741
[23] (黄森森, 马英杰, 张仕林 等. α + β两相钛合金元素再分配行为及其对显微组织和力学性能的影响 [J]. 金属学报, 2019, 55: 741)
[24] Cao S, Zhu S M, Lim C V S, et al. The mechanism of aqueous stress-corrosion cracking of α + β titanium alloys [J]. Corros. Sci., 2017, 125: 29
[25] Yang X, Wang W L, Ma W J, et al. Corrosion and wear properties of micro-arc oxidation treated Ti6Al4V alloy prepared by selective electron beam melting [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 2132
[26] Wang L W, Dou Y P, Han S K, et al. Influence of sulfide on the passivation behavior and surface chemistry of 2507 super duplex stainless steel in acidified artificial seawater [J]. Appl. Surf. Sci., 2020, 504: 144340
[27] Xiao M, Wang Q Y, Zhang X S, et al. Effect of laser quenching on microstructure, corrosion and wear behavior of AISI4130 steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 713
[27] (肖 檬, 王勤英, 张兴寿 等. 激光淬火对AISI4130钢微观组织结构及腐蚀、磨损行为的影响机制 [J]. 中国腐蚀与防护学报, 2023, 43: 713)
[28] Xu Y D, Qi J H, Nutter J, et al. Correlation between the formation of tribofilm and repassivation in biomedical titanium alloys during tribocorrosion [J]. Tribol. Int., 2021, 163: 107147
[29] Deng C M, Liu Z, Xia D H, et al. Localized corrosion mechanism of 5083-H111 Al alloy in simulated dynamic seawater zone [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 683
[29] (邓成满, 刘 喆, 夏大海 等. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制 [J]. 中国腐蚀与防护学报, 2023, 43: 683)
[30] Shan L, Wang Y X, Zhang Y R, et al. Tribocorrosion behaviors of PVD CrN coated stainless steel in seawater [J]. Wear, 2016, 362-363: 97
[31] Wang L Q, Zhou Y T, Wang J J, et al. Corrosion-wear interaction behavior of TC4 titanium alloy in simulated seawater [J]. Tribology, 2019, 39: 206
[31] (王林青, 周永涛, 王军军 等. TC4钛合金在模拟海水中腐蚀-磨损交互行为研究 [J]. 摩擦学学报, 2019, 39: 206)
[1] 王得, 张璠, 王兴奇, 张贺新, 赵成志, 杨延格. 单组分氟碳改性环氧涂层对碳钢和铝合金长期防腐性能的对比研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1549-1562.
[2] 许诗源, 孟鑫, 杨亚璋, 刘辰, 张昭, 方晓祖. 腐蚀形貌对镁合金电化学阻抗谱特征的影响研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1589-1598.
[3] 李雨情, 张铁志, 黄兴林, 孙振美, 张怡, 尹衍升. 耐压海乳杆菌对2205双相不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1619-1626.
[4] 孙士斌, 高浩, 常雪婷, 王东胜. 细晶FH40船用低温钢在海水-海冰中耦合失效行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1659-1668.
[5] 阮智邦, 魏仕轩, 王树鹏, 吕正平, 李格升, 李燚周. 中性氯化钠溶液中咪唑啉磷酸酯对7075铝合金电偶腐蚀抑制行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1734-1740.
[6] 黄泽邦, 刘光明, 范文学, 徐睿中, 朱炎彬, 刘晨辉. 钝化时间对304不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1741-1747.
[7] 郭玉杰, 李艳辉, 夏大海, 胡文彬. 腐蚀电化学阻抗谱的数据解析与物理模型研究进展[J]. 中国腐蚀与防护学报, 2025, 45(5): 1143-1160.
[8] 夏大海, 潘成成, 郭玉杰, 胡文彬, TRIBOLLET Bernard. EIS研究7050铝合金在NaCl溶液空蚀作用下的界面状态与腐蚀机制[J]. 中国腐蚀与防护学报, 2025, 45(5): 1196-1204.
[9] 王涛涛, 薛荣洁, 马晓伟, 万皓锋, 王冬朋, 刘珍光. 表面粗糙度以及NaOH溶液的浓度和温度对锆基非晶合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1253-1264.
[10] 刘鹏鹤, 薛丽莉, 许立坤, 辛永磊, 郭明帅, 周帅, 段体岗. 钛基体阴极充氢处理对RuO2-IrO2-TiO2 阳极微观结构和性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1277-1288.
[11] 何武豪, 刘阳, 杨思懿, 张韶栋, 吴伟, 张俊喜. 敏化处理对传统和增材制造316L不锈钢电化学和晶间腐蚀的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1331-1340.
[12] 刘硕, 吴立朋, 李京伦, 邢金正, 李赛. 盐碱地环境下铁尾矿基地聚物中钢筋锈蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(5): 1371-1380.
[13] 范世林, 杜娟, 杨少丹, 周延军, 宋克兴, 张国赏, 岳鹏飞, 杨冉, 王晓军. Cu-15Ni-8Sn合金在含S2-3.5%NaCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(5): 1408-1416.
[14] 李萍, 时慧杰, 裴继斌, 王子健, 曹铁山, 程从前, 赵杰. 纳秒激光辐照对17-4PH不锈钢电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1417-1424.
[15] 申志远, 单广斌, 陈闽东, 刘媛双. 用于腐蚀监测的电化学噪声信号识别方法[J]. 中国腐蚀与防护学报, 2025, 45(5): 1433-1440.