|
|
用于腐蚀监测的电化学噪声信号识别方法 |
申志远1,2, 单广斌1,2, 陈闽东1,2( ), 刘媛双1,2 |
1 化学品安全全国重点实验室 青岛 266104 2 中石化安全工程研究院有限公司 青岛 266104 |
|
An Electrochemical Noise Signal Recognition Method for Corrosion Monitoring |
SHEN Zhiyuan1,2, SHAN Guangbin1,2, CHEN Mindong1,2( ), LIU Yuanshuang1,2 |
1 State Key Laboratory of Chemical Safety, Qingdao 266104, China 2 SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266104, China |
引用本文:
申志远, 单广斌, 陈闽东, 刘媛双. 用于腐蚀监测的电化学噪声信号识别方法[J]. 中国腐蚀与防护学报, 2025, 45(5): 1433-1440.
Zhiyuan SHEN,
Guangbin SHAN,
Mindong CHEN,
Yuanshuang LIU.
An Electrochemical Noise Signal Recognition Method for Corrosion Monitoring[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1433-1440.
[1] |
Zhang Z, Li X F, Zhao Z Y, et al. In-situ monitoring of pitting corrosion of Q235 carbon steel by electrochemical noise: Wavelet and recurrence quantification analysis [J]. J. Electroanal. Chem., 2020, 879: 114776
|
[2] |
Zhang H F, Wu Z Q, Chen Y, et al. Real-time monitoring of the corrosion behaviour of the 304SS in HCl solution using BPNN with joint image recognition and electrochemical noise [J]. Corros. Sci., 2024, 228: 111779
|
[3] |
Jiao Y B, Zhang D P, Yu J, et al. Early identification of stress corrosion cracking of P110 low alloy steel in downhole fluid by electrochemical noise measurement [J]. Corros. Eng. Sci. Technol., 2021, 56: 230
|
[4] |
Shi P F, Hu L Y, Duan G Q, et al. Research and prospect of corrosion monitoring techniques [J]. Total. Corros. Control, 2023, 37(10): 23
|
[4] |
石鹏飞, 胡凌越, 段国庆 等. 腐蚀监测技术研究现状与展望 [J]. 全面腐蚀控制, 2023, 37(10): 23
|
[5] |
Han L, Zhang Y L, Liu X H, et al. The application of electrochemical noise technique on refinery technique on refinery [J]. Safety Health Environ., 2015, 15(5): 50
|
[5] |
韩 磊, 张艳玲, 刘小辉 等. 电化学噪声技术在炼油厂腐蚀监测中的应用 [J]. 安全、健康和环境, 2015, 15(5): 50
|
[6] |
Zhou M X, Wu J, Fan Z B, et al. Current situation and prospect of on-line monitoring technology for atmospheric corrosion testing of metallic materials [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 38
|
[6] |
周梦鑫, 吴 军, 樊志彬 等. 大气腐蚀在线监测技术研究现状与展望 [J]. 中国腐蚀与防护学报, 2023, 43: 38
doi: 10.11902/1005.4537.2022.027
|
[7] |
Sun Z J, Xue L, Xu Y M, et al. Overview of deep learning [J]. Appl. Res. Comput., 2012, 29: 2806
|
[7] |
孙志军, 薛 磊, 许阳明 等. 深度学习研究综述 [J]. 计算机应用研究, 2012, 29: 2806
|
[8] |
Hu Q F, Zhang T, Chen S H, et al. An instantaneous corrosion monitoring technique based on combining modified electrochemical noise and artificial neural network for determination of corrosion type and 2014 aluminium alloy corrosion rate in NaCl and Ce(NO3)3 solutions [J]. Int. J. Electrochem. Sci., 2022, 17: 220213
|
[9] |
Nazarnezhad-Bajestani M, Neshati J, Siadati M H. Determination of SS321 pitting stage in FeCl3 solution based on electrochemical noise measurement data using artificial neural network [J]. J. Electroanal. Chem., 2019, 845: 31
doi: 10.1016/j.jelechem.2019.05.036
|
[10] |
Calabrese L, Galeano M, Proverbio E, et al. Topological neural network of combined AE and EN signals for assessment of SCC damage [J]. Nondestruct. Test. Eval., 2020, 35(1): 98
|
[11] |
Liu W. Asymmetric surface configuration for electrochemical noise measurement on stainless steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1151
|
[11] |
刘 微. 测量不锈钢电化学噪声的非对称表面方法 [J]. 中国腐蚀与防护学报, 2023, 43: 1151
|
[12] |
An P L, Liang P, Ren J M, et al. Characteristics on electrochemical noise of pitting corrosion for high nitrogen austenitic stainless steels [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 26
|
[12] |
安朋亮, 梁 平, 任建民 等. 高氮奥氏体不锈钢点蚀行为的电化学噪声特征 [J]. 中国腐蚀与防护学报, 2018, 38: 26
doi: 10.11902/1005.4537.2016.242
|
[13] |
Hu H H, Wang G, Deng P C, et al. Electrochemical noise characteristics of 304 stainless steel pitting based on MATLAB [J]. J. Guangdong Ocean Univ., 2019, 39(4): 89
|
[13] |
胡欢欢, 王 贵, 邓培昌 等. 基于MATLAB的304不锈钢点蚀行为电化学噪声特征 [J]. 广东海洋大学学报, 2019, 39(4): 89
|
[14] |
Li Z G, Peng D H, Pu J W, et al. Pitting corrosion of stainless steel in chloride-containing potassium sulfate solution based on electrochemical noise technique [J]. Mater. Prot., 2018, 51(9): 122
|
[14] |
李志刚, 彭东辉, 浦静雯. 基于电化学噪声研究不锈钢在含氯硫酸钾溶液中的点蚀特征 [J]. 材料保护, 2018, 51(9): 122
|
[15] |
Deng J H, Wang G, Hu J Z, et al. Pitting behavior of stainless steel in simulated marine atmosphere based on electrochemical noise [J]. J. Electrochem., 2020, 26: 298
|
[15] |
邓俊豪, 王 贵, 胡杰珍 等. 基于电化学噪声研究模拟海洋大气环境下304不锈钢的点蚀行为 [J]. 电化学, 2020, 26: 298
doi: 10.13208/j.electrochem.190415
|
[16] |
Li Z G, Peng D H, Pu J W, et al. Application of electrochemical noise technology to the study of pitting behavior of 2205 steel [J]. Corros. Prot., 2018, 39: 11
|
[16] |
李志刚, 彭东辉, 浦静雯 等. 电化学噪声技术在2205钢点蚀行为研究中的应用 [J]. 腐蚀与防护, 2018, 39: 11
|
[17] |
Deng J H. Research and application of electrochemical noise technology in atmospheric pitting monitoring of stainless steel [D]. Zhanjiang: Guangdong Ocean University, 2020
|
[17] |
邓俊豪. 电化学噪声技术在不锈钢大气点蚀监测中的研究与应用 [D]. 湛江: 广东海洋大学, 2020
|
[18] |
Hu H H, Deng P C, Hu J Z, et al. Monitoring method of carbon steel atmosphere corrosion behavior based on electrochemical noise technology [J]. Eq. Envir. Eng., 2017, 14(9): 68
|
[18] |
胡欢欢, 邓培昌, 胡杰珍 等. 基于电化学噪声技术的碳钢大气腐蚀行为监测方法 [J]. 装备环境工程, 2017, 14(9): 68
|
[19] |
Wang F P, Jiang X Y, Zhang H. The relationship between the electrochemical noise spectrogram and the surface state of AZ91D magnesium alloy in sodium chloride solution [J]. J. Liaoning Norm. Univ. (Nat. Sci. Ed.), 2015, 38: 497
|
[19] |
王凤平, 蒋新瑜, 张 航. AZ91D镁合金在NaCl溶液中电化学噪声谱与表面状态关系 [J]. 辽宁师范大学学报(自然科学版), 2015, 38: 497
|
[20] |
Zhou F Y, Jin L P, Dong J. Review of convolutional neural network [J]. Chin. J. Comput., 2017, 40: 1229
|
[20] |
周飞燕, 金林鹏, 董 军. 卷积神经网络研究综述 [J]. 计算机学报, 2017, 40: 1229
|
[21] |
Liu B Y. Research on signal peak preservation smoothing algorithm based on segmented classification [D]. Nanjing: Nanjing University of Information Science & Technology, 2021
|
[21] |
刘宝莹. 基于分段分类的信号保峰平滑算法研究 [D]. 南京: 南京信息工程大学, 2021
|
[22] |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [A]. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [C]. Vegas, 2016: 770
|
[23] |
Huang W B, Chen R W, Yuan T T. Compression of UAV object detection model based on improved YOLOv3-SPP [J]. Comput. Eng. Appl., 2021, 57(21): 165
doi: 10.3778/j.issn.1002-8331.2007-0230
|
[23] |
黄文斌, 陈仁文, 袁婷婷. 改进YOLOv3-SPP的无人机目标检测模型压缩方案 [J]. 计算机工程与应用, 2021, 57(21): 165
doi: 10.3778/j.issn.1002-8331.2007-0230
|
[24] |
Fu H T, Wang P, Li X Y, et al. Lightweight network model for moving object recognition [J]. J. Xi'an Jiaotong Univ., 2021, 55(7): 124
|
[24] |
符惠桐, 王 鹏, 李晓艳 等. 面向移动目标识别的轻量化网络模型 [J]. 西安交通大学学报, 2021, 55(7): 124
|
[25] |
Zhou Z H. Machine Learning [M]. Beijing: Tsinghua University Press, 2016: 28
|
[25] |
周志华. 机器学习 [M]. 北京: 清华大学出版社, 2016: 28
|
[26] |
Carrington A M, Manuel D G, Fieguth P W, et al. Deep ROC analysis and AUC as balanced average accuracy, for improved classifier selection, audit and explanation [J]. IEEE Trans. Pattern Anal. Mach. Intell., 2023, 45: 329
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|