Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1371-1380     CSTR: 32134.14.1005.4537.2024.361      DOI: 10.11902/1005.4537.2024.361
  研究报告 本期目录 | 过刊浏览 |
盐碱地环境下铁尾矿基地聚物中钢筋锈蚀行为
刘硕1,2, 吴立朋1,2(), 李京伦1,2, 邢金正1,2, 李赛1,2
1 石家庄铁道大学 道路与铁道工程安全保障省部共建教育部重点实验室 石家庄 050043
2 石家庄铁道大学土木工程学院 石家庄 050043
Corrosion Behavior of Steel Rebar in Iron Tailings-based Geopolymers in Saline-Alkali Environment
LIU Shuo1,2, WU Lipeng1,2(), LI Jinglun1,2, XING Jinzheng1,2, LI Sai1,2
1 Key Laboratory of Roads and Railway Engineering Safety Control of Ministry of Education, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
2 School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
引用本文:

刘硕, 吴立朋, 李京伦, 邢金正, 李赛. 盐碱地环境下铁尾矿基地聚物中钢筋锈蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(5): 1371-1380.
Shuo LIU, Lipeng WU, Jinglun LI, Jinzheng XING, Sai LI. Corrosion Behavior of Steel Rebar in Iron Tailings-based Geopolymers in Saline-Alkali Environment[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1371-1380.

全文: PDF(6645 KB)   HTML
摘要: 

研究了盐碱地环境下不同配合比铁尾矿基地聚物中钢筋的锈蚀行为。通过模拟盐碱地环境对铁尾矿基地聚物-钢筋试块进行电加速锈蚀试验,利用电化学阻抗谱、腐蚀电位和极化曲线3种测试方法,研究不同配合比对试块的电化学参数和钢筋锈蚀速率的影响。结果表明:在电加速锈蚀的整个过程中,试块电阻呈现先上升后下降的趋势,表明SO42-及Cl-在腐蚀前期可以增加试块的密实度;在相同溶液浓度和电加速条件下,合理配合比有利于对钢筋的保护,延缓钢筋的锈蚀进程,陶瓷粉掺量对钢筋锈蚀规律的影响尤为明显。通过试块的阻抗(Rc)值、腐蚀电流密度(Icorr)值和腐蚀电位的变化规律表明陶瓷粉掺量较低、水玻璃模数较高、碱掺量较低、水胶比适中的配合比试块对钢筋的保护效果更好。

关键词 盐碱地环境地聚物钢筋锈蚀电化学    
Abstract

The corrosion behavior of HPB235 hot rolled round steel rebar buried in iron tailings-based geopolymers in a simulated saline-alkali environment was investigated via electrochemical impedance spectroscopy, corrosion potential and polarization curve methods, so that to clarify the influence of the formular of geopolymers on the electrochemical parameters of the test blocks and the corrosion rate of steel bar. The results show that during the corrosion process by applied electric current, the resistance of the test block increases first and then decreases, indicating that SO42- and Cl- can increase the compactness of the test block. In conditions with setting solution concentration and applied electric current, the test block with reasonable formular is conducive to the protection and delays the corrosion process of steel bars. The influence of ceramic powder content on the corrosion of steel bars is particularly obvious. By comparing the evolution of the free corrosion potential, corrosion current density Icorr and impedance Rc of the steel bar with test geopolymers block of different formulars, it is found that the test block with low ceramic powder content, high sodium silicate modulus, low alkali content and moderate water binder has better protection effect for the steel bar.

Key wordssaline-alkali environment    geopolymers    rusting of steel bars    electrochemistry
收稿日期: 2024-11-01      32134.14.1005.4537.2024.361
ZTFLH:  TU503  
基金资助:中央引导地方科技发展资金项目(236Z3810G);河北省自然科学基金(E2021210136)
通讯作者: 吴立朋,E-mail:lipengwu@outlook.com,研究方向为土木工程材料的腐蚀行为及其耐久性
Corresponding author: WU Lipeng, E-mail: lipengwu@outlook.com
作者简介: 刘 硕,男,1999年生,硕士生
图1  铁尾矿粉粒径分布
MaterialSiO2Al2O3CaOFe2O3K2OMgONa2OK2OP2O5
IT61.538.906.0513.311.845.821..211.850.68
Ceramics66.6319.013.570.941.840.851.0100
表1  铁尾矿及陶瓷粉化学成分
SampleWater glassNaOHWaterIT sandCeramic powderIT powder
A231.6457.83173.461291.37193.71451.98
B323.6161.39135.821252.78187.91438.47
C426.9462.7188.951214.26182.14424.99
D380.4355.8870.241262.31252.46378.69
E312.7978.09140.811245.54249.12373.66
F269.4651.12201.761251.77250.35375.53
G377.8571.6869.771253.79313.44313.44
H317.0646.57142.701262.44315.61315.61
I267.6566.82200.421243.41310.85310.85
表2  铁尾矿基地聚物正交试验配合比
图2  半浸泡式腐蚀试验装置示意图
图3  不同陶瓷粉掺量、水胶比、碱掺量及模数试块的抗压强度
图4  铁尾矿基地聚物SEM形貌
图5  典型测试点的EDS分析结果
图6  CaO-SiO2-Al2O3三元相图
图7  铁尾矿基地聚物盐碱侵蚀前后XRD图谱
图8  陶瓷粉掺量30%、40%及50%试块在不同电加速腐蚀时间下的Nyquist曲线
图9  试块在不同电加速腐蚀时间下阻抗谱的等效电路图
图10  具有不同陶瓷粉掺量、水胶比、模数及碱掺量的试块的Rc值
图11  不同陶瓷粉掺量、水胶比、模数及碱掺量试块的腐蚀电位
图12  不同电加速腐蚀时间下陶瓷粉掺量30%、40%及50%试块的Tafel极化曲线
图13  不同陶瓷粉掺量、水胶比、模数及碱掺量试块的腐蚀电流密度
图14  不同陶瓷粉掺量、水胶比、模数及碱掺量试块的极化电阻
[1] Lin P Z, Wang Y Y. Durability of concrete bridge exposed to chloride ion erosion in saline alkali soil [J]. Bridge Constr., 2022, 52(6): 73
[1] 蔺鹏臻, 王雲一. 混凝土桥梁受盐碱地中氯离子侵蚀的耐久性研究 [J]. 桥梁建设, 2022, 52(6): 73
[2] Júnior N S A, Neto J S A, Santana H A, et al. Durability and service life analysis of metakaolin-based geopolymer concretes with respect to chloride penetration using chloride migration test and corrosion potential [J]. Constr. Build. Mater., 2021, 287: 122970
[3] Shee-Ween O, Cheng-Yong H, Yun-Ming L, et al. Sintered and unsintered pressed fly ash geopolymer: A comprehensive study on structural transformation in nitric and sulfuric acid [J]. J. Build. Eng., 2024, 93: 109823
[4] Wang A G, Zheng Y, Zhang Z H, et al. The durability of alkali-activated materials in comparison with ordinary portland cements and concretes: A review [J]. Engineering, 2020, 6: 695
[5] Saptamongkol A, Sata V, Wongsa A, et al. Hybrid geopolymer paste from high calcium fly ash and glass wool: Mechanical, microstructure, and sulfuric acid and magnesium sulfate resistance characteristics [J]. J. Build. Eng., 2023, 76: 107245
[6] Wang H J, Wang Y J, Li W C, et al. Report on National Mine Resources Conservation and Comprehensive Utilization [M]. Beijing: Geological Publishing House, 2019: 14
[6] 王海军, 王伊杰, 李文超 等. 全国矿产资源节约与综合利用报告2019 [M]. 北京: 地质出版社, 2019: 14
[7] Huang W, Xue K, Zhang Z L, et al. Research and application progress of iron tailings sand [J]. Bull. Chin. Ceram. Soc., 2024, 43: 3655
[7] 黄 伟, 薛 葵, 张子龙 等. 铁尾矿砂的研究与应用进展 [J]. 硅酸盐通报, 2024, 43: 3655
[8] Shang M G, Zhang Y S, He Z M, et al. Study on corrosion deterioration of reinforced concrete under constant acceleration test based on double stress [J]. Mater. Rep., 2022, 36: 21030289
[8] 尚明刚, 张云升, 何忠茂 等. 基于双应力的钢筋混凝土恒加试验腐蚀劣化规律研究 [J]. 材料导报, 2022, 36: 21030289
[9] Tong Z F, Zeng Q P, Wang J X, et al. Research status and prospects of geopolymers preparation from tailings [J]. Nonferr. Met. Sci. Eng., 2021, 12(4): 96
[9] 佟志芳, 曾庆钋, 王佳兴 等. 利用尾矿制备地聚物研究现状及展望 [J]. 有色金属科学与工程, 2021, 12(4): 96
[10] Liu J R, Shang H S, Wang W Z, et al. Current density and corrosion morghology of steel bar corrosion in reinforced concrete [J]. Corros. Prot., 2021, 42(7): 34
[10] 刘继睿, 商怀帅, 王玮钊 等. 钢筋混凝土的通电锈蚀电流密度及钢筋锈蚀形貌 [J]. 腐蚀与防护, 2021, 42(7): 34
[11] Qiao G B, Qiao H X, Lu C G. Study on energized corrosion mechanism of reinforced concrete in groundwater environment of Lanzhou metro [J]. Mater. Rep., 2022, 36: 21010008
[11] 乔国斌, 乔宏霞, 路承功. 兰州地铁地下水环境中钢筋混凝土通电锈蚀机理研究 [J]. 材料导报, 2022, 36: 21010008
[12] Zhang J H, Yi C H, Wang S K, et al. Accelerated corrosion of steel bars in new and old concrete structures [J]. J. Chin. Ceram. Soc., 2022, 50: 2096
[12] 张菊辉, 衣存浩, 王诗昆 等. 新老混凝土的钢筋加速锈蚀 [J]. 硅酸盐学报, 2022, 50: 2096
[13] Zuo X B, Qiu L F, Tang Y J, et al. Corrosion process of steel bar in cement pastes under combined action of chloride and sulfate attacks [J]. J. Build. Mater., 2017, 20: 352
[13] 左晓宝, 邱林峰, 汤玉娟 等. 氯盐和硫酸盐侵蚀下水泥净浆中钢筋锈蚀过程 [J]. 建筑材料学报, 2017, 20: 352
[14] Da B, Yu H F, Ma H Y, et al. Equivalent electrical circuits fitting of electrochemical impedance spectroscopy for rebar steel corrosion of coral aggregate concrete [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 260
[14] 达 波, 余红发, 麻海燕 等. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究 [J]. 中国腐蚀与防护学报, 2019, 39: 260
[15] Deng X, Wu Q. Reinforcement corrosion of coral concrete with different reinforcement types and protective thickness under bending stress [J]. Bull. Chin. Ceram. Soc., 2023, 42: 898
[15] 邓 潇, 吴 庆. 弯曲应力作用下不同钢筋种类和保护层厚度珊瑚混凝土的钢筋锈蚀研究 [J]. 硅酸盐通报, 2023, 42: 898
[16] Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A, et al. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O [J]. Cem. Concr. Res., 2011, 41: 923
[17] Zheng Y, Wang A G, Liu K W, et al. Sulfate resistance and mechanism analysis of different geopolymer mortars [J]. J. Build. Mater., 2021, 24: 1224
[17] 郑 毅, 王爱国, 刘开伟 等. 不同地聚物砂浆抗硫酸盐侵蚀性能及其机理分析 [J]. 建筑材料学报, 2021, 24: 1224
[18] Lyu Q F, Wang Z S, Chen Y, et al. Study on influence mechanism of sodium chloride on the strength of alkali-activated geopolymers [J]. J. Funct. Mater., 2020, 51: 2067
[18] 吕擎峰, 王子帅, 陈 臆 等. 氯化钠对碱激发地聚物强度影响机理研究 [J]. 功能材料, 2020, 51: 2067
doi: 10.3969/j.issn.1001-9731.2020.02.011
[19] Qiao H X, Liu Z C, Lu C G, et al. Electrochemical characteristics of reinforced concrete with multiple cementitious system in carbonization environment [J]. J. Hunan Univ. (Nat. Sci.), 2023, 50(3): 110
[19] 乔宏霞, 刘志超, 路承功 等. 碳化环境下多元胶凝体系钢筋混凝土电化学特性 [J]. 湖南大学学报(自然科学版), 2023, 50(3): 110
[20] Xie T Y, Visintin P, Zhao X Y, et al. Mix design and mechanical properties of geopolymer and alkali activated concrete: review of the state-of-the-art and the development of a new unified approach [J]. Constr. Build. Mater., 2020, 256: 119380
[21] Jiang M S, Li F, Zhou L A, et al. Effects of sodium carbonate, sodium hydroxide and water glass composite activation on properties of geopolymer cementitious materials [J]. Bull. Chin. Ceram. Soc., 2024, 43: 929
[21] 蒋明屾, 李 飞, 周理安 等. 碳酸钠、氢氧化钠与水玻璃复合激发对地聚物胶凝材料性能的影响 [J]. 硅酸盐通报, 2024, 43: 929
[1] 李萍, 时慧杰, 裴继斌, 王子健, 曹铁山, 程从前, 赵杰. 纳秒激光辐照对17-4PH不锈钢电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1417-1424.
[2] 王涛涛, 薛荣洁, 马晓伟, 万皓锋, 王冬朋, 刘珍光. 表面粗糙度以及NaOH溶液的浓度和温度对锆基非晶合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1253-1264.
[3] 申志远, 单广斌, 陈闽东, 刘媛双. 用于腐蚀监测的电化学噪声信号识别方法[J]. 中国腐蚀与防护学报, 2025, 45(5): 1433-1440.
[4] 何武豪, 刘阳, 杨思懿, 张韶栋, 吴伟, 张俊喜. 敏化处理对传统和增材制造316L不锈钢电化学和晶间腐蚀的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1331-1340.
[5] 郭玉杰, 李艳辉, 夏大海, 胡文彬. 腐蚀电化学阻抗谱的数据解析与物理模型研究进展[J]. 中国腐蚀与防护学报, 2025, 45(5): 1143-1160.
[6] 刘鹏鹤, 薛丽莉, 许立坤, 辛永磊, 郭明帅, 周帅, 段体岗. 钛基体阴极充氢处理对RuO2-IrO2-TiO2 阳极微观结构和性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1277-1288.
[7] 夏大海, 潘成成, 郭玉杰, 胡文彬, TRIBOLLET Bernard. EIS研究7050铝合金在NaCl溶液空蚀作用下的界面状态与腐蚀机制[J]. 中国腐蚀与防护学报, 2025, 45(5): 1196-1204.
[8] 周谦永, 赖漾, 李谦. 酸洗工艺对不同锡量二次冷轧镀锡板耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 939-946.
[9] 熊启勇, 蒋婉娟, 曾美婷, 徐金山, 易勇刚, 李岩岩, 董泽华. 基于双电极电化学阻抗实现现场涂层老化状态的快速无损检测[J]. 中国腐蚀与防护学报, 2025, 45(4): 1025-1034.
[10] 王亚东, 马荣耀, 万晔, 董俊华. 静水压力对吉帕级海工钢母材及焊材腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(3): 653-663.
[11] 李祥东, 刘昌昊, 张弛, 陈文娟, 崔宸悦, 朱勇文, 王姝舒. WC-Zn复合镀层的工艺设计及其性能研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 795-802.
[12] 郑文涛, 陆飞雪, 都凯, 王志惠, 贾海龙. 喷丸工艺对7075铝合金板材表面性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(3): 765-772.
[13] 李丽, 李善文, 史洪微, 梁国平, 李春霖, 孙禹, 秦晋, 王伟, 韩恩厚. 高速列车用铝合金环氧底漆的腐蚀行为和湿热老化机理研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 757-764.
[14] 杨震宇, 基超, 郭丽雅, 徐闰, 彭伟, 赵洪山, 韦习成, 董瀚. 6种典型商用纯铁和钢材在3.5%NaCl溶液中的初期腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(2): 469-478.
[15] 王慧玲, 明洪亮, 王俭秋, 韩恩厚. 掺氢天然气管线钢氢渗透行为研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 249-260.