|
|
|
| 新型耐微生物腐蚀油管钢的硫酸盐还原菌腐蚀行为研究 |
杨宝齐1, 闫茂成2( ), 史显波2, 高博文2 |
1 衡阳华菱钢管有限公司 衡阳 421099 2 中国科学院金属研究所 国家金属腐蚀控制工程技术研究中心 沈阳 110016 |
|
| SRB Induced Corrosion Behavior of a Novel Microbial Corrosion Resistant Pipeline Steel |
YANG Baoqi1, YAN Maocheng2( ), SHI Xianbo2, GAO Bowen2 |
1 Hengyang Hualing Steel Pipe Corporation Limited, Hengyang 421099, China 2 National Engineering Research Center for Corrosion Control, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
杨宝齐, 闫茂成, 史显波, 高博文. 新型耐微生物腐蚀油管钢的硫酸盐还原菌腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1755-1763.
Baoqi YANG,
Maocheng YAN,
Xianbo SHI,
Bowen GAO.
SRB Induced Corrosion Behavior of a Novel Microbial Corrosion Resistant Pipeline Steel[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1755-1763.
| [1] |
Wang Y H, Li J, Liu H W, et al. Research progress of microbial corrosion of metallic materials in marine environment [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 577
|
| [1] |
(王宇晗, 李 俊, 刘恒维 等. 海洋环境中金属材料微生物腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2025, 45: 577)
|
| [2] |
Zhang W Z, Feng S Q, Song X P, et al. Microbial corrosion of polymer flooding oil gathering/transportation pipeline [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1098
|
| [2] |
(张维智, 冯思乔, 宋霄鹏 等. 聚合物驱集输管道微生物腐蚀行为实验研究 [J]. 中国腐蚀与防护学报, 2025, 45: 1098)
|
| [3] |
Yang K, Shi X B, Yan W, et al. Novel Cu-bearing pipeline steels: a new strategy to improve resistance to microbiologically influenced corrosion for pipeline steels [J]. Acta Metall. Sin., 2020, 56: 385
|
| [3] |
(杨 柯, 史显波, 严 伟 等. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径 [J]. 金属学报, 2020, 56: 385)
|
| [4] |
Shi X B, Xu D K, Yan M C, et al. Study on microbiologically influenced corrosion behavior of novel Cu-bearing pipeline steels [J]. Acta Metall. Sin., 2017, 53: 153
|
| [4] |
(史显波, 徐大可, 闫茂成 等. 新型含Cu管线钢的微生物腐蚀行为研究 [J]. 金属学报, 2017, 53: 153)
|
| [5] |
Khan M S, Shi X B, Yuan S F, et al. Study on microbiologically influenced corrosion of HSLA-65 steel [J]. J. Mater. Res. Technol., 2024, 32: 2244
|
| [6] |
Lin G, Shen J C, Wang R M. Properties and application of antibacterial stainless steels [J]. Bao-Steel Technol., 2013(5): 43
|
| [6] |
(林 刚, 沈继程, 王如萌. 抗菌不锈钢的性能与应用 [J]. 宝钢技术, 2013(5): 43)
|
| [7] |
Yan B C, Zeng Y P, Zhang N, et al. Microbiologically influenced corrosion of Cu-bearing steel welded joints for petroleum pipes [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 479
|
| [7] |
(燕冰川, 曾云鹏, 张 宁 等. 石油管材用含Cu钢焊接接头的微生物腐蚀研究 [J]. 中国腐蚀与防护学报, 2025, 45: 479)
|
| [8] |
Liu Q J, Li P, Wu B H, et al. Copper alloying improves the microbiologically influenced corrosion resistance of pipeline steel [J]. Coatings, 2024, 14: 834
|
| [9] |
Fan L, Sun Y M, Wang D, et al. Microbiologically influenced corrosion of a novel pipeline steel containing Cu and Cr elements in the presence of Desulfovibrio vulgaris Hildenborough [J]. Corros. Sci., 2023, 223: 111421
|
| [10] |
Yu H B, Chen X, Liu Q P, et al. Anti microbiological corrosion performance of Cu-containing antibacterial pipeline steel [J]. Corros. Prot., 2020, 41(3): 10
|
| [10] |
(于浩波, 陈 旭, 刘乔平 等. 含Cu抗菌管线钢的抑制微生物腐蚀性能 [J]. 腐蚀与防护, 2020, 41(3): 10)
|
| [11] |
Zeng Y P, Yan W, Shi X B, et al. Effect of copper content on the MIC resistance in pipeline steel [J]. Acta Metall. Sin., 2024, 60: 43
|
| [11] |
(曾云鹏, 严 伟, 史显波 等. Cu含量对管线钢耐微生物腐蚀性能的影响 [J]. 金属学报, 2024, 60: 43)
|
| [12] |
Shi X B, Yan W, Xu D K, et al. Microbial corrosion resistance of a novel Cu-bearing pipeline steel [J]. J. Mater. Sci. Technol., 2018, 34: 2480
|
| [13] |
Liduino V, Galvão M, Brasil S, et al. SRB-mediated corrosion of marine submerged AISI 1020 steel under impressed current cathodic protection [J]. Colloid. Surf., 2021, 202B: 111701
|
| [14] |
Wang Y L, Guan F, Duan J Z, et al. Synergistic inhibition of rhamnolipid and 2, 2-dibromo-3-hypoazopropionamide on microbiologically influenced corrosion of X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1412
|
| [14] |
(王娅利, 管 方, 段继周 等. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2024, 44: 1412)
|
| [15] |
Shi X T, Wang Y, Li H Y, et al. Corrosion resistance and biocompatibility of calcium-containing coatings developed in near-neutral solutions containing phytic acid and phosphoric acid on AZ31B alloy [J]. J. Alloy. Compd., 2020, 823: 153721
|
| [16] |
Xu J X, Huang R Y, Chu Z H, et al. Corrosion behavior of high entropy alloy FeNiCoCrW0.2Al0.1 in sulfate-reducing bacteria containing solution [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 460
|
| [16] |
(许竞翔, 黄睿阳, 褚振华 等. FeNiCoCrW0.2Al0.1高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究 [J]. 中国腐蚀与防护学报, 2025, 45: 460)
|
| [17] |
Permeh S, Lau K, Duncan M. Effect of crevice morphology on SRB activity and steel corrosion under marine foulers [J]. Bioelectrochemistry, 2021, 142: 107922
|
| [18] |
Song D Z, Zou J T, Sun L X, et al. Enhanced the SRB corrosion resistance of 316L stainless steel via adjusting the addition of Cu and Ce elements [J]. Vacuum, 2024, 224: 113183
|
| [19] |
Li M J, Nan L, Liang C Y, et al. Antibacterial behavior and related mechanisms of martensitic Cu-bearing stainless steel evaluated by a mixed infection model of Escherichia coli and Staphylococcus aureus in vitro [J]. J. Mater. Sci. Technol., 2021, 62: 139
|
| [20] |
Kashmiri Z N, Mankar S A. Free radicals and oxidative stress in bacteria [J]. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3: 34
|
| [21] |
O'gorman J, Humphreys H. Application of copper to prevent and control infection. Where are we now? [J]. J. Hosp. Infect., 2012, 81: 217
|
| [22] |
Ma Z, Liu R, Zhao Y, et al. Study on the antibacterial mechanism of Cu-bearing titanium alloy in the view of materials science [J]. Mater. Technol., 2020, 35: 11
|
| [23] |
Chen M, Yang L, Zhang L, et al. Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys [J]. Mater. Sci. Eng., 2017, 75C: 906
|
| [24] |
Macomber L, Imlay J A. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity [J]. Proc. Natl. Acad. Sci. USA, 2009, 106: 8344
|
| [25] |
Mahmoudi P, Akbarpour M R, Lakeh H B, et al. Antibacterial Ti-Cu implants: A critical review on mechanisms of action [J]. Mater. Today Bio, 2022, 17: 100447
|
| [26] |
Shi A Q, Zhu C S, Fu S, et al. What controls the antibacterial activity of Ti-Ag alloy, Ag ion or Ti2Ag particles? [J]. Mater. Sci. Eng., 2020, 109C: 110548
|
| [27] |
Nan L, Liu Y Q, Lü M Q, et al. Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy [J]. J. Mater. Sci.: Mater. Med., 2008, 19: 3057
|
| [28] |
Li M, Ma Z, Zhu Y, et al. Toward a molecular understanding of the antibacterial mechanism of copper‐bearing titanium alloys against Staphylococcus aureus [J]. Adv. Healthc. Mater., 2016, 5: 557
|
| [29] |
Ke N, Ni Y Y, He J Q, et al. Research progress of metal corrosion caused by extracellular polymeric substances of microorganisms [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 278
|
| [29] |
(柯 楠, 倪莹莹, 何嘉淇 等. 微生物胞外聚合物引起的金属腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 278)
|
| [30] |
Zhang X R, Yang C G, Yang K. Contact killing of Cu-bearing stainless steel based on charge transfer caused by the microdomain potential difference [J]. ACS Appl. Mater. Interfaces, 2020, 12: 361
|
| [31] |
Farha M A, Verschoor C P, Bowdish D, et al. Collapsing the proton motive force to identify synergistic combinations against Staphylococcus aureus [J]. Chem. Biol., 2013, 20: 1168
|
| [32] |
Maloney P C, Kashket E R, Wilson T H. A protonmotive force drives ATP synthesis in bacteria [J]. Proc. Natl. Acad. Sci. USA, 1974, 71: 3896
|
| [33] |
Cook G M, Greening C, Hards K, et al. Energetics of pathogenic bacteria and opportunities for drug development [J]. Adv. Microb. Physiol., 2014, 65: 1
|
| [34] |
Fu S, Zhang Y, Yang Y, et al. An antibacterial mechanism of titanium alloy based on micro-area potential difference induced reactive oxygen species [J]. J. Mater. Sci. Technol., 2022, 119: 75
|
| [35] |
Xie Y C, Lu M, Cui S S, et al. Construction of a rough surface with submicron Ti2Cu particle on Ti-Cu alloy and its effect on the antibacterial properties and cell biocompatibility [J]. Metals, 2022, 12: 1008
|
| [36] |
Sim J W, Kim J H, Park C H, et al. Effect of phase conditions on tensile and antibacterial properties of Ti-Cu alloys with Ti2Cu intermetallic compound [J]. J. Alloy. Compd., 2022, 926: 166823
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|