Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (6): 1755-1763     CSTR: 32134.14.1005.4537.2025.059      DOI: 10.11902/1005.4537.2025.059
  研究报告 本期目录 | 过刊浏览 |
新型耐微生物腐蚀油管钢的硫酸盐还原菌腐蚀行为研究
杨宝齐1, 闫茂成2(), 史显波2, 高博文2
1 衡阳华菱钢管有限公司 衡阳 421099
2 中国科学院金属研究所 国家金属腐蚀控制工程技术研究中心 沈阳 110016
SRB Induced Corrosion Behavior of a Novel Microbial Corrosion Resistant Pipeline Steel
YANG Baoqi1, YAN Maocheng2(), SHI Xianbo2, GAO Bowen2
1 Hengyang Hualing Steel Pipe Corporation Limited, Hengyang 421099, China
2 National Engineering Research Center for Corrosion Control, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

杨宝齐, 闫茂成, 史显波, 高博文. 新型耐微生物腐蚀油管钢的硫酸盐还原菌腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1755-1763.
Baoqi YANG, Maocheng YAN, Xianbo SHI, Bowen GAO. SRB Induced Corrosion Behavior of a Novel Microbial Corrosion Resistant Pipeline Steel[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1755-1763.

全文: PDF(10793 KB)   HTML
摘要: 

通过形貌观察、成分分析、微生物分析及电化学测试等方法,研究耐微生物腐蚀(MIC)油管钢的硫酸盐还原菌(SRB)腐蚀行为。结果表明:SRB环境中耐MIC钢表面附着的活跃细菌数量大幅减少,生物膜厚度减小,耐MIC钢有效抑制了表面生物膜的附着生长;耐MIC钢具有更高的自腐蚀电位、更低的腐蚀电流密度和更大的电荷转移电阻;耐MIC钢表面腐蚀产物少,主要为致密的α-FeOOH,而普通钢表面则以疏松的Fe3O4为主,普通钢的失重腐蚀速率约为耐MIC钢的1.83倍,通过优化Cu-Cr-Ni三元合金体系,所制备的油管钢抗菌与耐蚀性能均提升。

关键词 耐MIC钢管道钢微生物腐蚀硫酸盐还原菌微生物膜    
Abstract

The corrosion behavior of a microbial corrosion-resistant (MIC-resistant) pipeline steel induced by sulfate reducing bacteria (SRB) was investigated through morphology observation, composition analysis, microbial culture analysis and electrochemical testing. The results show that, in the SRB environment, the number of active bacteria adhered to the surface of MIC-resistant steel is significantly reduced, and accordingly the thickness of the biofilm decreases. The MIC-resistant steel effectively inhibits biofilm attachment and growth on its surface. The MIC-resistant steel exhibited higher open-circuit potential, lower corrosion current density, and higher charge transfer resistance. There are fewer corrosion products on the surface of the MIC-resistant steel, composed mainly of dense α-FeOOH scale, in the contrast, a loose Fe3O4 scale may emerge on the ordinary steel surface. The corrosion rate in mass loss of an ordinary steel is approximately 1.83 times that of the MIC-resistant steel. It follows that comprehensively optimizing the content of the three alloying elements Cu, Cr, and Ni, synergistic improvement in both anti-bacterial and anti-corrosion could be achieved for this novel steel.

Key wordsMIC resistant steel    pipeline steel    microbial corrosion    sulfate reducing bacteria    biofilm
收稿日期: 2025-02-21      32134.14.1005.4537.2025.059
ZTFLH:  TG172  
基金资助:国家自然科学基金(51471176)
通讯作者: 闫茂成,E-mail:yanmc@imr.ac.cn,研究方向为油气材料腐蚀及控制
Corresponding author: YAN Maocheng, E-mail: yanmc@imr.ac.cn
作者简介: 杨宝齐,男,1984年生,本科
SampleCSiMnPSCuCrNiMoFe
Ordinary steel0.140.251.20.020.010.400.400.400.14Bal.
MIC resistant steel0.070.180.30.0070.0020.551.400.550.14Bal.
表1  实验用钢的化学成分
图1  耐MIC钢和普通油管钢的显微组织
图2  接菌培养基中浸泡14 d后耐MIC钢和普通钢表面腐蚀产物SEM形貌及EDS分析
图3  耐MIC钢和普通钢在接菌培养基中浸泡14 d后表面Raman图谱
图4  耐MIC钢和普通钢在接菌培养基中浸泡7 d后的CLSM像
图5  耐MIC钢和普通钢在接菌培养基中浸泡14 d,去除腐蚀产物后的表面形貌
图6  耐MIC钢和普通钢在接菌培养基中浸泡14 d后表面最大点蚀形貌
图7  耐MIC钢和普通钢在接菌培养基中浸泡14 d后的动电位极化曲线
Steelβa / mV·dec-1βc / mV·dec-1Icorr / μA·cm-2Ecorr / mVCorrosion rate / mm·a-1
Ordinary steel34610214.9-8880.173
MIC resistant steel24376.38.53-8470.0992
表2  耐MIC钢和普通钢在接菌培养基中浸泡14 d后的动电位极化曲线拟合参数
图8  耐MIC钢和普通钢在接菌培养基中浸泡不同时间后的Nyquist和Bode图
图9  用于EIS拟合的等效电路模型
SamplesTime / dRs / Ω·cm2Rbc / Ω·cm2Qbc / Ω-1·cm-2·s nRct / Ω·cm2Qct / Ω-1·cm-2·s n
Ordinary steel13.6480085.82 × 10-452.971.43 × 10-3
23.5291033.12 × 10-30.2581.73 × 10-2
43.6133113.79 × 10-34831.20 × 10-2
73.8746716.44 × 10-329304.01 × 10-3
103.8120456.39 × 10-331144.87 × 10-3
143.8710196.34 × 10-373396.29 × 10-3
MIC resistant steel13.560.115.09 × 10-42.31×1046.01 × 10-4
23.626922.02 × 10-327.916.14 × 10-3
43.4724.51.02 × 10-22693.70 × 10-3
73.558.263.71 × 10-31.66 × 1042.83 × 10-3
103.5938.23.23 × 10-31.37 × 1042.93 × 10-3
143.6536.33.52 × 10-35.66 × 1042.10 × 10-3
表3  接菌培养基中的EIS拟合结果
图10  耐MIC钢和普通钢在接菌培养基中Rct + Rbc随时间的变化曲线
[1] Wang Y H, Li J, Liu H W, et al. Research progress of microbial corrosion of metallic materials in marine environment [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 577
[1] (王宇晗, 李 俊, 刘恒维 等. 海洋环境中金属材料微生物腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2025, 45: 577)
[2] Zhang W Z, Feng S Q, Song X P, et al. Microbial corrosion of polymer flooding oil gathering/transportation pipeline [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1098
[2] (张维智, 冯思乔, 宋霄鹏 等. 聚合物驱集输管道微生物腐蚀行为实验研究 [J]. 中国腐蚀与防护学报, 2025, 45: 1098)
[3] Yang K, Shi X B, Yan W, et al. Novel Cu-bearing pipeline steels: a new strategy to improve resistance to microbiologically influenced corrosion for pipeline steels [J]. Acta Metall. Sin., 2020, 56: 385
[3] (杨 柯, 史显波, 严 伟 等. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径 [J]. 金属学报, 2020, 56: 385)
[4] Shi X B, Xu D K, Yan M C, et al. Study on microbiologically influenced corrosion behavior of novel Cu-bearing pipeline steels [J]. Acta Metall. Sin., 2017, 53: 153
[4] (史显波, 徐大可, 闫茂成 等. 新型含Cu管线钢的微生物腐蚀行为研究 [J]. 金属学报, 2017, 53: 153)
[5] Khan M S, Shi X B, Yuan S F, et al. Study on microbiologically influenced corrosion of HSLA-65 steel [J]. J. Mater. Res. Technol., 2024, 32: 2244
[6] Lin G, Shen J C, Wang R M. Properties and application of antibacterial stainless steels [J]. Bao-Steel Technol., 2013(5): 43
[6] (林 刚, 沈继程, 王如萌. 抗菌不锈钢的性能与应用 [J]. 宝钢技术, 2013(5): 43)
[7] Yan B C, Zeng Y P, Zhang N, et al. Microbiologically influenced corrosion of Cu-bearing steel welded joints for petroleum pipes [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 479
[7] (燕冰川, 曾云鹏, 张 宁 等. 石油管材用含Cu钢焊接接头的微生物腐蚀研究 [J]. 中国腐蚀与防护学报, 2025, 45: 479)
[8] Liu Q J, Li P, Wu B H, et al. Copper alloying improves the microbiologically influenced corrosion resistance of pipeline steel [J]. Coatings, 2024, 14: 834
[9] Fan L, Sun Y M, Wang D, et al. Microbiologically influenced corrosion of a novel pipeline steel containing Cu and Cr elements in the presence of Desulfovibrio vulgaris Hildenborough [J]. Corros. Sci., 2023, 223: 111421
[10] Yu H B, Chen X, Liu Q P, et al. Anti microbiological corrosion performance of Cu-containing antibacterial pipeline steel [J]. Corros. Prot., 2020, 41(3): 10
[10] (于浩波, 陈 旭, 刘乔平 等. 含Cu抗菌管线钢的抑制微生物腐蚀性能 [J]. 腐蚀与防护, 2020, 41(3): 10)
[11] Zeng Y P, Yan W, Shi X B, et al. Effect of copper content on the MIC resistance in pipeline steel [J]. Acta Metall. Sin., 2024, 60: 43
[11] (曾云鹏, 严 伟, 史显波 等. Cu含量对管线钢耐微生物腐蚀性能的影响 [J]. 金属学报, 2024, 60: 43)
[12] Shi X B, Yan W, Xu D K, et al. Microbial corrosion resistance of a novel Cu-bearing pipeline steel [J]. J. Mater. Sci. Technol., 2018, 34: 2480
[13] Liduino V, Galvão M, Brasil S, et al. SRB-mediated corrosion of marine submerged AISI 1020 steel under impressed current cathodic protection [J]. Colloid. Surf., 2021, 202B: 111701
[14] Wang Y L, Guan F, Duan J Z, et al. Synergistic inhibition of rhamnolipid and 2, 2-dibromo-3-hypoazopropionamide on microbiologically influenced corrosion of X80 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1412
[14] (王娅利, 管 方, 段继周 等. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2024, 44: 1412)
[15] Shi X T, Wang Y, Li H Y, et al. Corrosion resistance and biocompatibility of calcium-containing coatings developed in near-neutral solutions containing phytic acid and phosphoric acid on AZ31B alloy [J]. J. Alloy. Compd., 2020, 823: 153721
[16] Xu J X, Huang R Y, Chu Z H, et al. Corrosion behavior of high entropy alloy FeNiCoCrW0.2Al0.1 in sulfate-reducing bacteria containing solution [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 460
[16] (许竞翔, 黄睿阳, 褚振华 等. FeNiCoCrW0.2Al0.1高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究 [J]. 中国腐蚀与防护学报, 2025, 45: 460)
[17] Permeh S, Lau K, Duncan M. Effect of crevice morphology on SRB activity and steel corrosion under marine foulers [J]. Bioelectrochemistry, 2021, 142: 107922
[18] Song D Z, Zou J T, Sun L X, et al. Enhanced the SRB corrosion resistance of 316L stainless steel via adjusting the addition of Cu and Ce elements [J]. Vacuum, 2024, 224: 113183
[19] Li M J, Nan L, Liang C Y, et al. Antibacterial behavior and related mechanisms of martensitic Cu-bearing stainless steel evaluated by a mixed infection model of Escherichia coli and Staphylococcus aureus in vitro [J]. J. Mater. Sci. Technol., 2021, 62: 139
[20] Kashmiri Z N, Mankar S A. Free radicals and oxidative stress in bacteria [J]. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3: 34
[21] O'gorman J, Humphreys H. Application of copper to prevent and control infection. Where are we now? [J]. J. Hosp. Infect., 2012, 81: 217
[22] Ma Z, Liu R, Zhao Y, et al. Study on the antibacterial mechanism of Cu-bearing titanium alloy in the view of materials science [J]. Mater. Technol., 2020, 35: 11
[23] Chen M, Yang L, Zhang L, et al. Effect of nano/micro-Ag compound particles on the bio-corrosion, antibacterial properties and cell biocompatibility of Ti-Ag alloys [J]. Mater. Sci. Eng., 2017, 75C: 906
[24] Macomber L, Imlay J A. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity [J]. Proc. Natl. Acad. Sci. USA, 2009, 106: 8344
[25] Mahmoudi P, Akbarpour M R, Lakeh H B, et al. Antibacterial Ti-Cu implants: A critical review on mechanisms of action [J]. Mater. Today Bio, 2022, 17: 100447
[26] Shi A Q, Zhu C S, Fu S, et al. What controls the antibacterial activity of Ti-Ag alloy, Ag ion or Ti2Ag particles? [J]. Mater. Sci. Eng., 2020, 109C: 110548
[27] Nan L, Liu Y Q, Lü M Q, et al. Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy [J]. J. Mater. Sci.: Mater. Med., 2008, 19: 3057
[28] Li M, Ma Z, Zhu Y, et al. Toward a molecular understanding of the antibacterial mechanism of copper‐bearing titanium alloys against Staphylococcus aureus [J]. Adv. Healthc. Mater., 2016, 5: 557
[29] Ke N, Ni Y Y, He J Q, et al. Research progress of metal corrosion caused by extracellular polymeric substances of microorganisms [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 278
[29] (柯 楠, 倪莹莹, 何嘉淇 等. 微生物胞外聚合物引起的金属腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 278)
[30] Zhang X R, Yang C G, Yang K. Contact killing of Cu-bearing stainless steel based on charge transfer caused by the microdomain potential difference [J]. ACS Appl. Mater. Interfaces, 2020, 12: 361
[31] Farha M A, Verschoor C P, Bowdish D, et al. Collapsing the proton motive force to identify synergistic combinations against Staphylococcus aureus [J]. Chem. Biol., 2013, 20: 1168
[32] Maloney P C, Kashket E R, Wilson T H. A protonmotive force drives ATP synthesis in bacteria [J]. Proc. Natl. Acad. Sci. USA, 1974, 71: 3896
[33] Cook G M, Greening C, Hards K, et al. Energetics of pathogenic bacteria and opportunities for drug development [J]. Adv. Microb. Physiol., 2014, 65: 1
[34] Fu S, Zhang Y, Yang Y, et al. An antibacterial mechanism of titanium alloy based on micro-area potential difference induced reactive oxygen species [J]. J. Mater. Sci. Technol., 2022, 119: 75
[35] Xie Y C, Lu M, Cui S S, et al. Construction of a rough surface with submicron Ti2Cu particle on Ti-Cu alloy and its effect on the antibacterial properties and cell biocompatibility [J]. Metals, 2022, 12: 1008
[36] Sim J W, Kim J H, Park C H, et al. Effect of phase conditions on tensile and antibacterial properties of Ti-Cu alloys with Ti2Cu intermetallic compound [J]. J. Alloy. Compd., 2022, 926: 166823
[1] 李雨情, 张铁志, 黄兴林, 孙振美, 张怡, 尹衍升. 耐压海乳杆菌对2205双相不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1619-1626.
[2] 邓艳, 彭子飘, 刘毅超, 钟显康. 一种新型含铜钛合金的制备与抗菌性能研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1649-1658.
[3] 郭章伟, 叶婷雨, 郭娜, 刘涛. EH36钢中MoSRB附着和腐蚀的影响及机理[J]. 中国腐蚀与防护学报, 2025, 45(5): 1341-1350.
[4] 黄诗雨, 刘士琛, 杨淞普, 刘家兵, 李刚, 郭娜, 刘涛. FH40船用钢在模拟极地海水环境中的腐蚀与磨蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(4): 859-868.
[5] 张维智, 冯思乔, 宋霄鹏, 刘艾华, 唐德志, 闫茂成, 韩恩厚. 聚合物驱集输管道微生物腐蚀行为实验研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1098-1106.
[6] 王宇晗, 李俊, 刘恒维, 许楠, 刘杰, 陈旭. 海洋环境中金属材料微生物腐蚀研究进展[J]. 中国腐蚀与防护学报, 2025, 45(3): 577-588.
[7] 戚鹏, 王鹏, 曾艳, 张盾. 微生物腐蚀的检测方法和预测模型[J]. 中国腐蚀与防护学报, 2025, 45(3): 602-610.
[8] 姜慧芳, 刘扬豪, 刘莹, 李迎超, 于浩波, 赵博, 陈曦. 地下储氢库J55钢氢环境下微生物腐蚀机理研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 347-358.
[9] 许竞翔, 黄睿阳, 褚振华, 蒋全通. FeNiCoCrW0.2Al0.1 高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 460-468.
[10] 燕冰川, 曾云鹏, 张宁, 史显波, 严伟. 石油管材用含Cu钢焊接接头的微生物腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.
[11] 王娅利, 管方, 段继周, 张丽娜, 杨政险, 侯保荣. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[12] 柯楠, 倪莹莹, 何嘉淇, 柳海宪, 金正宇, 刘宏伟. 微生物胞外聚合物引起的金属腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(2): 278-294.
[13] 裴莹莹, 管方, 董续成, 张瑞永, 段继周, 侯保荣. Desulfovibrio Bizertensis SY-1在阴极极化条件下对X70 管线钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 345-354.
[14] 高秋英, 曾文广, 王恒, 刘元聪, 扈俊颖. 流体冲刷作用对SRB的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[15] 吴佳佳, 徐鸣, 王鹏, 张盾. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.