|
|
基于双电极电化学阻抗实现现场涂层老化状态的快速无损检测 |
熊启勇1, 蒋婉娟2, 曾美婷1, 徐金山1, 易勇刚1, 李岩岩2, 董泽华2( ) |
1 新疆油田分公司工程技术研究院 克拉玛依 834000 2 华中科技大学化学与化工学院 武汉 430074 |
|
In situ Rapid Non-destructive Diagnosis on Degradation of Coatings Based on Dual-electrode Electrochemical Impedance Probe |
XIONG Qiyong1, JIANG Wanjuan2, ZENG Meiting1, XU Jinshan1, YI Yonggang1, LI Yanyan2, DONG Zehua2( ) |
1 Research Institute of Engineering Technology, PetroChina Xinjiang Oilfield Company, Karamay 834000, China 2 School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China |
引用本文:
熊启勇, 蒋婉娟, 曾美婷, 徐金山, 易勇刚, 李岩岩, 董泽华. 基于双电极电化学阻抗实现现场涂层老化状态的快速无损检测[J]. 中国腐蚀与防护学报, 2025, 45(4): 1025-1034.
Qiyong XIONG,
Wanjuan JIANG,
Meiting ZENG,
Jinshan XU,
Yonggang YI,
Yanyan LI,
Zehua DONG.
In situ Rapid Non-destructive Diagnosis on Degradation of Coatings Based on Dual-electrode Electrochemical Impedance Probe[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1025-1034.
[1] |
Pang Z K, Yang J, Li G M, et al. Analysis method and detection technology of metal corrosion characteristics [J]. Environ. Technol., 2022, 40: 81
|
[1] |
(庞志开, 杨 杰, 李光茂 等. 金属腐蚀特性分析方法与检测技术 [J]. 环境技术, 2022, 40: 81)
|
[2] |
Bastidas D M. Corrosion and protection of metals [J]. Metals, 2020, 10: 458
|
[3] |
Blanchard F, Kadi M J, Bousser E, et al. Effect of thermal ageing on the optical properties and pore structure of thermal barrier coatings [J]. Surf. Coat. Technol., 2023, 452: 129080
|
[4] |
Ruan X, Zhang X M, Yang J, et al. Failure mode analysis and life prediction of organic coatings in marine environment [A]. 2018 National Academic Exchange Meeting on Corrosion Electrochemistry and Test methods [C]. Beijing, 2018: 272
|
[4] |
(阮 鑫, 张小明, 杨 健 等. 有机涂层防护体系在海洋环境下失效模式的分析及其寿命预测 [A]. 2018年全国腐蚀电化学及测试方法学术交流会论文集 [C]. 北京, 2018: 272)
|
[5] |
Che K Y, Lyu P, Wan F, et al. Investigations on aging behavior and mechanism of polyurea coating in marine atmosphere [J]. Materials, 2019, 12: 3636
|
[6] |
Li Z S, Zhao S W, Shao Z W, et al. Deterioration mechanism of vanadium dioxide smart coatings during natural aging: uncovering the role of water [J]. Chem. Eng. J., 2022, 447: 137556
|
[7] |
Nicholas J, Mohamed M, Dhaliwal G S, et al. Effects of accelerated environmental aging on glass fiber reinforced thermoset polyurethane composites [J]. Compos. Eng., 2016, 94B: 370
|
[8] |
Bierwagen G, Tallman D, Li J P, et al. EIS studies of coated metals in accelerated exposure [J]. Prog. Org. Coat., 2003, 46: 149
|
[9] |
Choi E Y, Shin J C, Lee J Y, et al. Accelerated life testing of thermoplastic polyurethane encapsulants used in underwater acoustic sensor [J]. Macromol. Res., 2020, 28: 510
|
[10] |
Ishida T, Richaud E, Gervais M, et al. Thermal aging of acrylic-urethane network: kinetic modeling and end-of-life criteria combined with mechanical properties [J]. Prog. Org. Coat., 2022, 163: 106654
|
[11] |
Dogan A, Atas C. Variation of the mechanical properties of E-glass/epoxy composites subjected to hygrothermal aging [J]. J. Compos. Mater., 2016, 50: 637
|
[12] |
Pang J, Liu X J, Liu N Z, et al. Galvanic corrosion of T2 Cu-alloy and Q235 steel in simulated beishan groundwater environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1435
|
[12] |
(庞 洁, 刘相局, 刘娜珍 等. T2铜合金和Q235钢在模拟北山地下水环境中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1435)
|
[13] |
Wang P F, He X F, Zhang H, et al. Correlation between accelerated aging of coating and natural exposure test [J]. J. Beijing Univ. Aeronaut. Astronaut., 2022, 48: 27
|
[13] |
(汪鹏飞, 贺小帆, 张 涵 等. 涂层加速老化与自然曝晒试验的相关性分析 [J]. 北京航空航天大学学报, 2022, 48: 27)
|
[14] |
Chen Y L, Zhang C, Li Y W, et al. Deterioration processes of organic coatings under the low-frequency alternation of wetting and drying condition [J]. Equ. Environ. Eng., 2019, 16: 122
|
[14] |
(陈亚林, 张 丛, 李延伟 等. 低频率干湿交替环境中有机涂层失效过程 [J]. 装备环境工程, 2019, 16: 122)
|
[15] |
Diler E, Lédan F, LeBozec N, et al. Real-time monitoring of the degradation of metallic and organic coatings using electrical resistance sensors [J]. Mater. Corros., 2017, 68: 1365
|
[16] |
Sun X G, Wang R, Zhang Z Y, et al. On-line corrosion monitoring technology for high-speed train in dynamic service circumstance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 441
|
[16] |
(孙晓光, 王 睿, 张志毅 等. 高速列车动态服役环境腐蚀在线监测技术研究 [J]. 中国腐蚀与防护学报, 2022, 42: 441)
doi: 10.11902/1005.4537.2021.239
|
[17] |
Lin B, Fu G Q, Shen X S, et al. Pipeline corrosion and coating durability monitoring under insulation of nuclear power plant [J]. Total Corros. Control, 2020, 34: 102
|
[17] |
(林 斌, 付国庆, 沈新生 等. 核电厂保温层下管道腐蚀与涂层耐久性监测 [J]. 全面腐蚀控制, 2020, 34: 102)
|
[18] |
Zhou W, Zhao Y G, Li W, et al. Degradation formula and working lifetime prediction for high-temperature coating [J]. Appl. Surf. Sci., 2006, 253: 2565
|
[19] |
Zhu Y P, Bousfield D, Gramlich W. Failure prediction of waterborne barrier coatings during folding [J]. J. Coat. Technol. Res., 2021, 18: 1117
|
[20] |
Zhang Z H, Wu J, Su T, et al. Life prediction for anticorrosive coatings on steel bridges [J]. Corrosion, 2020, 76: 773
|
[21] |
Fartash A H, Lyavoli H F, Poursaeidi E, et al. Interfacial delamination of porous thermal barrier coatings based on SEM image processing in finite element model [J]. Theor. Appl. Fract. Mec., 2023, 125: 103915
|
[22] |
Huang Y H, Wang J. Prediction of coating adhesion loss due to stretching [J]. Int. J. Adhes. Adhes., 2013, 40: 49
|
[23] |
Cao H L, Cao P S, Kang L P, et al. Failure analysis and damage development trend research of aero-engine high-pressure turbine blades [J]. J. Civil Aviat. Univ. China, 2017, 35: 13
|
[23] |
(曹惠玲, 曹鹏双, 康力平 等. 发动机HPT叶片失效分析及损伤发展趋势研究 [J]. 中国民航大学学报, 2017, 35: 13)
|
[24] |
Yu W J, Wang T C, Zhao D Y, et al. Lifetime prediction model for barrier-type corrosion-resistant coating [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1617
|
[24] |
(禹文娟, 王天丛, 赵东杨 等. 封闭型耐蚀涂层的寿命预测模型研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1617)
doi: 10.11902/1005.4537.2023.383
|
[25] |
Wang T C, Zhao D Y, Xiang X Y, et al. Degradation behavior of an epoxy corrosion-resistant coating in NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1361
|
[25] |
(王天丛, 赵东杨, 向雪云 等. 一种环氧耐蚀涂层在NaCl溶液中的劣化行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1361)
doi: 10.11902/1005.4537.2023.375
|
[26] |
Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 39
|
[26] |
(高浩东, 崔 宇, 刘 莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 39)
doi: 10.11902/1005.4537.2021.034
|
[27] |
Wang T Y, Zhang Z G, Lu W Z, et al. Effect of alternating pressure on electrochemical behavior of solvent-free epoxy coating in simulated ultra-deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 929
|
[27] |
(王腾宇, 张正贵, 陆卫中 等. 交变压力对无溶剂环氧涂层在模拟超深海环境下的电化学行为 [J]. 中国腐蚀与防护学报, 2022, 42: 929)
doi: 10.11902/1005.4537.2022.133
|
[28] |
Li Z X, Cao Y H, Li C J, et al. Relationship between corrosion failure degree of organic coatings and mechanical properties for dissimilar metal assamblies [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 679
|
[28] |
(李卓玄, 曹艳辉, 李崇杰 等. 耦接件涂层失效程度与其力学损伤之间的关系 [J]. 中国腐蚀与防护学报, 2024, 44: 679)
doi: 10.11902/1005.4537.2023.370
|
[29] |
Cai G Y, Wang H W, Jiang D, et al. Impedance sensor for the early failure diagnosis of organic coatings [J]. J. Coat. Technol. Res., 2018, 15: 1259
|
[30] |
Shi W, Wang Z, Fan Y Y, et al. Design of the armament corrosion monitoring system based on CdS coating aging probe and MCU [J]. J. Naval Aviat. Univ., 2016, 31: 595
|
[30] |
(石 薇, 王 朕, 范源远 等. 基于单片机和CdS涂层老化探头的装备腐蚀监测系统设计 [J]. 海军航空工程学院学报, 2016, 31: 595)
|
[31] |
Xia D H, Deng C M, Macdonald D, et al. Electrochemical measurements used for assessment of corrosion and protection of metallic materials in the field: a critical review [J]. J. Mater. Sci. Technol., 2022, 112: 151
|
[32] |
Mills D J, Broster M, Razaq I. Continuing work to enable electrochemical methods to be used to monitor the performance of organic coatings in the field [J]. Prog. Org. Coat., 2008, 63: 267
|
[33] |
Larché J F, Bussière P O, Gardette J L. Characterisation of accelerated ageing devices for prediction of the service life of acrylic-melamine/urethane thermosets [J]. Polym. Degrad. Stab., 2011, 96: 1530
|
[34] |
Zhang X D, Zhao Y, Guo Y F, et al. Study on aging and service life prediction of FEVE coating [J]. Paint Coat. Ind., 2013, 43: 62
|
[34] |
(张晓东, 赵 钺, 郭燕芬 等. FEVE涂层的老化与服役寿命预测研究 [J]. 涂料工业, 2013, 43: 62)
|
[35] |
Khalifeh R, Lescop B, Gallée F, et al. Development of a radio frequency resonator for monitoring water diffusion in organic coatings [J]. Sens. Actuat. Phys., 2016, 247A: 30
|
[36] |
Zou F, Thierry D. Localized electrochemical impedance spectroscopy for studying the degradation of organic coatings [J]. Electrochim. Acta, 1997, 42: 3293
|
[37] |
Busso E P, Evans H E, Wright L, et al. A software tool for lifetime prediction of thermal barrier coating systems [J]. Mater. Corros., 2008, 59: 556
|
[38] |
Nazarov A, Thierry D. Application of scanning kelvin probe in the study of protective paints [J]. Front. Mater., 2019, 6: 192
|
[39] |
Sheikholeslami S, Williams G, McMurray H N, et al. Cut-edge corrosion behavior assessment of newly developed environmental-friendly coating systems using the Scanning Vibrating Electrode Technique (SVET) [J]. Corros. Sci., 2021, 192: 109813
|
[40] |
Bastos A C, Quevedo M C, Karavai O V, et al. Review—on the application of the Scanning Vibrating Electrode Technique (SVET) to corrosion research [J]. J. Electrochem. Soc., 2017, 164: C973
|
[41] |
Gnedenkov A S, Sinebryukhov S L, Mashtalyar D V, et al. Localized corrosion of the Mg alloys with inhibitor-containing coatings: SVET and SIET studies [J]. Corros. Sci., 2016, 102: 269
|
[42] |
Almond D P, Cox R L, Moghisi M, et al. Acoustic properties of plasma-sprayed coatings and their applications to non-destructive evaluation [J]. Thin Solid Films, 1981, 83: 311
|
[43] |
Gao J, Li C, Feng H X, et al. In situ and dynamic observation of coating failure behavior [J]. Prog. Org. Coat., 2020, 138: 105387
|
[44] |
Savill T, Jewell E. Design of a chipless RFID tag to monitor the performance of organic coatings on architectural cladding [J]. Sensors, 2022, 22: 3312
|
[45] |
Latif J, Khan Z A, Stokes K. Structural monitoring system for proactive detection of corrosion and coating failure [J]. Sens. Actuat. Phys., 2020, 301A: 111693
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|