Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (3): 827-836     CSTR: 32134.14.1005.4537.2024.190      DOI: 10.11902/1005.4537.2024.190
  研究报告 本期目录 | 过刊浏览 |
桥梁缆索用高强锌铝合金镀层钢丝在中性盐雾环境中的腐蚀行为研究
陈思雨(), 王靖羽, 高立强
中铁大桥科学研究院有限公司 桥梁智能与绿色建造全国重点实验室 武汉 430050
Corrosion Behavior in Neutral Salt Spray Environment of High Strength Zn-Al Alloy Coated Steel Wire for Bridge Cables
CHEN Siyu(), WANG Jingyu, GAO Liqiang
State Key Laboratory of Bridge Intelligent and Green Construction, China Railway Bridge Science Research Institute, Ltd., Wuhan 430050, China
引用本文:

陈思雨, 王靖羽, 高立强. 桥梁缆索用高强锌铝合金镀层钢丝在中性盐雾环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 827-836.
Siyu CHEN, Jingyu WANG, Liqiang GAO. Corrosion Behavior in Neutral Salt Spray Environment of High Strength Zn-Al Alloy Coated Steel Wire for Bridge Cables[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 827-836.

全文: PDF(27970 KB)   HTML
摘要: 

采用电化学测试和腐蚀失重方法,结合扫描电子显微镜(SEM)、X射线衍射仪(XRD)、超景深显微镜(SDM)等表面分析技术,研究了2100 MPa桥梁缆索锌铝合金镀层钢丝在中性盐雾环境中的腐蚀动力学规律及腐蚀机理。结果表明,锌铝合金镀层钢丝在中性盐雾环境中的腐蚀产物主要由Zn5(OH)8Cl2·H2O与Zn(OH)2组成,还有少量Al(OH)3和Fe3O4生成。腐蚀行为可分为钝化膜溶解过程、富锌相溶解过程、富锌相和共晶相的过渡区间和锌铝共晶相的溶解过程4个阶段。在试验周期内,镀锌铝合金涂层体系极化电阻Rp先减小后增大,说明其耐蚀性先变弱后变强;钢丝腐蚀速率呈现先升高后降低的趋势,钢丝基体未出现明显点蚀坑、试样表面未出现其他腐蚀产物,腐蚀过程为全面腐蚀。采用回归分析腐蚀量-时间曲线,腐蚀速率增长随试验时间的延长而趋于缓慢,说明腐蚀产物对腐蚀具有延缓作用,锌铝合金镀层钢丝在中性盐雾环境中具有良好的耐蚀性。

关键词 桥梁缆索钢丝锌铝合金镀层盐雾腐蚀性能全面腐蚀    
Abstract

The corrosion kinetics and corrosion mechanism of Zn-Al alloy coated steel wire for 2100 MPa bridge cable in neutral salt spray environment were studied by means of electrochemical testing, corrosion loss measurement, scanning electron microscopy (SEM), X-ray diffractometer (XRD), ultra-depth of field microscopy (SDM) etc. The results show that the corrosion products of Zn-Al alloy coated steel wire are mainly composed of Zn(OH)2 and Zn5(OH)8Cl2·H2O, and a small amount of Al(OH)3 and Fe3O4. The corrosion behavior can be divided into four stages: the dissolution process of passivated film, the dissolution process of zinc-rich phase, the dissolution process related with the transition interval of zinc-rich phase and eutectic phase, and the dissolution process of Zn-Al eutectic phase. During the test period, the polarization resistance Rp of the Zn-Al alloy coating decreases first and then increase, indicating that its corrosion resistance becomes weak first and then becomes strong. In other word, the corrosion rate of the steel wire increases first and then decreases. There is no obvious corrosion pits formed on the steel wire matrix and no red corrosion products on the surface of the sample. The regression analysis of the corrosion-time curve shows that the corrosion rate increases slowly with the extension of the test time, indicating that the corrosion products have a delaying effect on corrosion, therefore, the Zn-Al alloy coated steel wire has a good corrosion resistance in the neutral salt spray environment.

Key wordsbridge cable wire    Zinc-aluminum alloy coating    salt spray corrosion properties    general corrosion
收稿日期: 2024-06-24      32134.14.1005.4537.2024.190
ZTFLH:  TD123  
通讯作者: 陈思雨,E-mail:347108347@qq.com,研究方向为桥梁腐蚀防护与维养
Corresponding author: CHEN Siyu, E-mail: 347108347@qq.com
作者简介: 陈思雨,男,1998年生,硕士,助理工程师
图1  钢丝锌铝合金镀层的截面微观形貌图
Element123
Zn89.8658.6239.06
Al10.1432.7130.27
Fe-8.6730.67
表1  钢丝上锌铝镀层的化学成分
图2  锌铝合金镀层的XRD谱图
图3  镀锌铝钢丝中性盐雾试验后的表面宏观形貌
图4  镀锌铝钢丝中性盐雾试验除锈后的表面宏观形貌
图5  镀锌铝钢丝中性盐雾腐蚀后的超景深显微图
图6  镀锌铝钢丝中性盐雾腐蚀不同时间且去除表面锈层后的超景深显微图
图7  镀锌铝钢丝中性盐雾试验不同时间后的表面SEM图
图8  镀锌铝钢丝中性盐雾试验不同时间且除锈后的SEM图
PositionZnAlFe
195.224.680.10
287.4511.680.87
373.6426.889.48
457.1531.7711.08
522.3247.7629.92
66.5522.6270.83
73.7619.5576.69
81.033.4995.48
表2  镀锌铝钢丝中性盐雾试验不同时间且除锈后的镀层化学成分
图9  镀锌铝钢丝中性盐雾试验不同时间后表面EDS分析结果
图10  镀锌铝钢丝中性盐雾试验不同时间后表面XRD谱图
图11  钢丝盐雾腐蚀不同时间后的Tafel极化曲线
t / hEcorr / VIcorr / A·cm-2
120-987.326.6557 × 10-6
240-1003.12.3864 × 10-6
360-1028.31.3183 × 10-5
480-1048.61.6816 × 10-5
600-988.841.7909 × 10-5
720-1002.91.6191 × 10-5
840-906.678.1244 × 10-6
960-865.187.7913 × 10-6
表3  钢丝盐雾腐蚀不同时间后极化曲线的拟合参数
图12  镀锌铝钢丝经不同时间盐雾腐蚀后的电化学阻抗图
PeriodRs / Ω·cm-2Q1 / F·cm-2n1R1 / Ω·cm-2Q2 / F·cm-2n2R2 / Ω·cm-2Rp
120 h2.851 × 10-31.87 × 10-30.498835586.381 × 10-8115.913573.91
240 h107.533 × 10-40.501917954.387 × 10-8117.251812.25
360 h0.012.637 × 10-30.50211626.128 × 10-819.7741171.77
480 h0.011.098 × 10-20.4947358.73.664 × 10-8111.69370.39
600 h0.019.243 × 10-30.6885468.96.301 × 10-8110.56479.46
720 h0.012.967 × 1030.7173640.63.067 × 10-8113.49654.09
840 h0.016.037 × 10-30.74914575.535 × 10-8112.871469.87
960 h0.014.612 × 10-30.617825803.404 × 10-6121.42601.4
表4  电化学阻抗拟合数据表
图13  镀锌铝钢丝经不同时间盐雾腐蚀后的失重曲线
[1] Wang Z G, Zhu X X, Zhao J, et al. Performance of galvanized zinc and zinc-aluminum alloy for high strength steel cables [J]. Corros. Prot., 2021, 42(7): 25
[1] 王志刚, 朱晓雄, 赵 军 等. 缆索用高强热浸镀锌及锌铝合金钢丝的性能 [J]. 腐蚀与防护, 2021, 42(7): 25
[2] Pistofidis N, Vourlias G, Konidaris S, et al. Microstructure of zinc hot-dip galvanized coatings used for corrosion protection [J]. Mater. Lett., 2005, 60: 786
[3] Gong L H, Zhu Y Q, Qi X. Atmospheric corrosion propagation on galvanized steels underneath paints with scratchs [J]. Corros. Sci. Prot. Technol., 2009, 21: 530
[3] 龚利华, 朱玉巧, 戚 霞. 涂膜破坏后膜下镀锌钢板大气腐蚀扩展研究 [J]. 腐蚀科学与防护技术, 2009, 21: 530
[4] Mayrbaurl R M, Camo S. Cracking and fracture of suspension bridge wire [J]. J. Bridge Eng., 2001, 6: 645
[5] Ye H W, Wang Y Q, Sun P P. Experimental study on fatigue strength of galvanized steel wire corroded by bridge cables [J]. World Bridges, 2013, 41(4): 44
[5] 叶华文, 王义强, 孙鹏鹏. 桥梁缆索腐蚀镀锌钢丝的疲劳强度试验研究 [J]. 世界桥梁, 2013, 41(4): 44
[6] Nakamura S, Suzumura K, translated by Wang Y Q, Ye H W, Duan X. Hydrogen embrittlement and corrosion fatigue of corroded bridge wires [J]. J. China Foreign Highw., 2014, 34(6): 110
[6] Nakamura S, Suzumura K著, 王义强, 叶华文, 段熹 译. 腐蚀桥梁缆索的氢脆和腐蚀疲劳研究 [J]. 中外公路, 2014, 34(6): 110
[7] Xu W L, Ning S W, Luan B F, et al. Development of ultra-high strength galvanized steel wire for bridge cable [J]. Metal Prod., 2010, 36(2): 27
[7] 徐文雷, 宁世伟, 栾佰峰 等. 桥梁缆索用超高强度镀锌钢丝的研制 [J]. 金属制品, 2010, 36(2): 27
[8] He X, Wu M X, Yin L, et al. Damage evolution and fatigue life of steel wire with double corrosion pits for suspension bridge under wind-and traffic-loads [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1358
[8] 何 训, 吴梦雪, 尹 力 等. 风-车流耦合作用下悬索桥吊索钢丝的双蚀坑损伤演化及疲劳寿命研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1358
[9] Ye J M, Sun Y N. Application of zinc-aluminum alloy coated steel wire in cable bridge [J]. Metal Prod., 2016, 42(3): 42
[9] 叶觉明, 孙雨楠. 锌铝合金镀层钢丝在缆索桥梁上的应用 [J]. 金属制品, 2016, 42(3): 42
[10] Xiao W T, Liu J, Peng J J, et al. Corrosion resistance of two arc spraying coatings on EH36 steel in neutral salt spray environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1003
[10] 肖文涛, 刘 静, 彭晶晶 等. 两种电弧喷涂涂层在中性盐雾环境下的耐蚀性能对比研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1003
doi: 10.11902/1005.4537.2022.284
[11] Sui J L, Li X B, Lin Z F, et al. Corrosion resistance of two thermal sprayed Zn-Al alloy coatings in seawater at low temperatures [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 471
[11] 隋佳利, 李相波, 林志峰 等. 两种热喷涂锌铝涂层在低温海水介质中防腐性能研究 [J]. 中国腐蚀与防护学报, 2016, 36: 471
doi: 10.11902/1005.4537.2015.188
[12] Shang T, Jiang G R, Liu G H, et al. Effect of heat treatment process on microstructure and corrosion resistance of Zn-6%Al-3%Mg coating [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1413
[12] 商 婷, 蒋光锐, 刘广会 等. 热处理对Zn-6%Al-3%Mg镀层微观组织与耐蚀性的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 1413
[13] Yang L J, Zhang Y M, Song Z L. Influence of aluminium content on corrosion behavior of superplastic Zn-A1 alloys [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 491
[13] 杨丽景, 张阳明, 宋振纶. 铝含量对超塑性锌铝合金腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2012, 32: 491
[14] Huang G Q, Yu C J, Li L S. Study on galvanic corrosion of steel couples in seawater [J]. J. Chin. Soc. Corros. Prot., 2001, 21: 47
[14] 黄桂桥, 郁春娟, 李兰生. 海水中钢的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2001, 21: 47
[15] Xue H J, Zhao J, Wang J Y. Technology and quality control of zinc-aluminum alloy coated steel wire for Yalu River bridge [J]. Highway, 2015, 60(2): 105
[15] 薛花娟, 赵 军, 王吉英. 鸭绿江大桥锌铝合金镀层钢丝技术研究及质量控制 [J]. 公路, 2015, 60(2): 105
[16] Seré P R, Zapponi M, Elsner C I, et al. Comparative corrosion behaviour of 55Aluminium-zinc alloy and zinc hot-dip coatings deposited on low carbon steel substrates [J]. Corros. Sci., 1998, 40: 1711
[17] Lin K L, Yang C F, Lee J T. Correlation of microstructure with corrosion and electrochemical behavior of the batch-type hot-dip Al-Zn coatings: part I. Zn and 5%Al-Zn coatings [J]. Corrosion, 1991, 47: 9
[18] Cai Q, Li S X, Pu J B, et al. Corrosion resistance and antifouling activities of silver-doped CrN coatings deposited by magnetron sputtering [J]. Surf. Coat. Technol., 2018, 354: 194
[1] 肖文涛, 刘静, 彭晶晶, 张弦, 吴开明. 两种电弧喷涂涂层在中性盐雾环境下的耐蚀性能对比研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.