Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 894-904     CSTR: 32134.14.1005.4537.2024.298      DOI: 10.11902/1005.4537.2024.298
  研究报告 本期目录 | 过刊浏览 |
极地航行船舶用高强钢的磨损腐蚀交互作用机制
杨淞普1, 黄诗雨1, 李刚2, 林一3, 郭娜1, 刘涛1(), 董丽华1
1 上海海事大学海洋科学与工程学院 上海 201306
2 中国航空综合技术研究所 北京 100028
3 中国核能电力股份有限公司 北京 100000
Interaction Behavior of Wear and Corrosion of High-strength Marine Steels for Polar Navigation Vessels
YANG Songpu1, HUANG Shiyu1, LI Gang2, LIN Yi3, GUO Na1, LIU Tao1(), DONG Lihua1
1 College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
2 China Aero Poly-technology Establishment, Beijing 100028, China
3 China National Nuclear Power Co., Ltd., Beijing 100000, China
引用本文:

杨淞普, 黄诗雨, 李刚, 林一, 郭娜, 刘涛, 董丽华. 极地航行船舶用高强钢的磨损腐蚀交互作用机制[J]. 中国腐蚀与防护学报, 2025, 45(4): 894-904.
Songpu YANG, Shiyu HUANG, Gang LI, Yi LIN, Na GUO, Tao LIU, Lihua DONG. Interaction Behavior of Wear and Corrosion of High-strength Marine Steels for Polar Navigation Vessels[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 894-904.

全文: PDF(21184 KB)   HTML
摘要: 

极地船舶在冰区航行时将受到冰摩擦和海水腐蚀的双重影响,而船舶用钢磨损和腐蚀间的交互作用机制尚未明晰。本文选用EH40、FH40和921A船舶用钢作为实验材料,通过力学-电化学结合的方法研究不同牌号钢材在模拟海水中的磨损腐蚀行为。结果表明:3种船舶用钢均发生磨粒磨损,磨痕表面生成分布不同的摩擦膜。其中,921A钢由于具有较高硬度、较稳定的马氏体结构,呈现出最佳的耐磨蚀性能,FH40钢次之,EH40钢最差。虽然由腐蚀直接引起的体积损失在总体积损失中占比较低,但腐蚀能显著加剧钢材的磨损。FH40和EH40钢的腐蚀磨损由纯机械摩擦占主导地位,由腐蚀引发的磨损增量分别占比18.5%和32.8%。921A钢由腐蚀引发的磨损增量占比则是纯机械摩擦占比的两倍,腐蚀加速机械磨损现象明显。

关键词 北极航线极地船舶船用高强钢腐蚀磨损交互作用    
Abstract

When navigating in polar ice regions, ships are subject simultaneously to both ice friction and seawater corrosion. However, the interaction behavior between wear and corrosion of shipbuilding steels remains unclear. In this study, the corrosion-wear behavior in seawater of three types of shipbuilding steels, EH40, FH40, and 921A was studied via mechanical-electrochemical approach. The results indicate that the three shipbuilding steels all suffered from abrasive wear, while different clusters composed of abrasive dusts and corrosion products co-exist on the worn surfaces. Among them, 921A demonstrated the best wear and corrosion resistance due to its high hardness and stable martensitic structure, followed by FH40, while the EH40 exhibiting the poorest performance. Although the volume loss directly caused by corrosion accounts for a relatively small proportion of the total volume loss, corrosion can significantly accelerate the wear of steel. For FH40 and EH40, the total corrosion wear is dominated by the portion of pure mechanical friction, and the corrosion induced wear increments accounts for 18.5% and 32.8%, respectively. In contrast, the corrosion induced wear increment for 921A was twice the proportion of pure mechanical friction, indicating a marked corrosion acceleration effect on mechanical wear.

Key wordsarctic routes    polar ships    high-strength ship steel    corrosion wear    interaction
收稿日期: 2024-09-12      32134.14.1005.4537.2024.298
ZTFLH:  TG172  
基金资助:中国博士后科学基金(2023M742213);国家资助博士后研究人员计划C档(GZC20231538);国防科工局技术基础项目(JSHS2022206A001)
通讯作者: 刘 涛,E-mail:liutao@shmtu.edu.cn,研究方向为极地船舶材料腐蚀与防护
Corresponding author: LIU Tao, E-mail: liutao@shmtu.edu.cn
作者简介: 杨淞普,男,2000年生,硕士生
SteelMnMoNiSiCCrNb
EH401.5-0.700.200.0550.140.02
FH401.560.0610.310.150.0530.160.038
921A0.50.262.850.350.090.98-
表1  EH40、FH40、921A钢的化学成分 (mass fraction / %)
图1  多功能摩擦磨损实验机上模具安装示意图
图2  EH40、FH40、921A钢的XRD图谱和维氏硬度
图3  EH40,FH40和921A钢的微观形貌
图4  OCP下磨蚀后磨痕的平面及三维形貌
图5  OCP下磨蚀后磨痕的截面图及摩擦时的COF曲线
图6  OCP下磨蚀表面的SEM形貌和对应的EDS图像
图7  3种钢在静态和摩擦状态下的动电位极化曲线,以及腐蚀电位与自腐蚀电流密度图
图8  阴极保护电位下摩擦后磨痕的平面及三维形貌
图9  3种钢在阴极保护电位下摩擦时电流密度变化,磨痕轮廓及摩擦系数
图10  3种钢在阴极保护状态下磨痕表面的SEM形貌和对应的EDS图像
图11  3种钢材在OCP下磨损后磨痕表面Fe 2p3/2的高分辨光谱与反卷积分析结果
SteelE / VVT / 10-3 mm-3VW / 10-3 mm-3VC / 10-3 mm-3ΔVW / 10-3 mm-3ΔVC / 10-3 mm-3
EH4016.23010.6140.0725.3180.226
FH40OCP12.1949.7690.0582.2570.110
921A5.0181.7900.0333.1780.017
表2  EH40、FH40、921A钢磨蚀后的各体积损失分量
图12  3种钢磨蚀后各体积损失分量占比柱状图
[1] Shi G J, Feng J G, Kang M Z, et al. Polar offshore engineering equipment: development status and key technologies [J]. Strategic Study CAE, 2021, 23(3): 144
[1] (师桂杰, 冯加果, 康美泽 等. 极地海洋工程装备的应用现状及关键技术分析 [J]. 中国工程科学, 2021, 23(3): 144)
doi: 10.15302/J-SSCAE-2021.03.021
[2] Xu H Y, An L Q, Dong L H, et al. Research progress in tribology of materials in polar marine environment [J]. Surf. Technol., 2023, 52(12): 260
[2] (徐昊钺, 安丽琼, 董丽华 等. 极地海洋环境服役材料的摩擦学研究进展 [J]. 表面技术, 2023, 52(12): 260)
[3] Mao X M, Guo N, Sun Z M, et al. Study on corrosion behavior of marine EH40 steel by polar cryogenic microorganisms [J]. Surf. Technol., 2025, 54(4): 70
[3] (毛晓敏, 郭 娜, 孙振美 等. 极地低温微生物对船用EH40钢的腐蚀行为研究 [J]. 表面技术, 2025, 54(4): 70)
[4] Sun S B, Wang X, Kang J, et al. Erosion-wear resistance of DH32 steel under ice load in simulated polar ice-breaking environment [J]. Tribology, 2021, 41: 493
[4] (孙士斌, 王 鑫, 康 健 等. DH32船用钢板在模拟极地破冰环境中的冰载荷冲蚀磨损性能研究 [J]. 摩擦学学报, 2021, 41: 493)
[5] Xiong J C, Zhang X D, Wang Y H. Research progress on ultra-low temperature steels: a review on their composition, microstructure, and mechanical properties [J]. Metals, 2023, 13: 2007
[6] Bai P H, Shang C L, Wu H H, et al. A review on the advance of low-temperature toughness in pipeline steels [J]. J. Mater. Res. Technol., 2023, 25: 6949
[7] Choi Y Y, Kim M H. Corrosion behaviour of welded low-carbon steel in the Arctic marine environment [J]. RSC Adv., 2018, 8: 30155
[8] Guo Z W, Hui X R, Zhao Q Y, et al. Pigmented Pseudoalteromonas piscicida exhibited dual effects on steel corrosion: Inhibition of uniform corrosion and induction of pitting corrosion [J]. Corros. Sci., 2021, 190: 109687
[9] Li M, Wu H J, Sun Y H. Influence of non-metallic inclusions on corrosive properties of polar steel [J]. Front. Mater., 2021, 8: 602851
[10] Xiao Q L, Xie Y Z, Hu F, et al. Current status and trends of low-temperature steel used in polar regions [J]. Materials (Basel), 2024, 17: 3117
[11] Wang Z G, Huang W J, Li Y, et al. Tribocorrosion behaviour of a biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in ringer's solution [J]. Mater. Sci. Eng., 2017, 76C: 1094
[12] Wang Z G, Zhou Y T, Wang H N, et al. Tribocorrosion behavior of Ti-30Zr alloy for dental implants [J]. Mater. Lett., 2018, 218: 190
[13] Wang L Q, Zhou Y T, Wang J J, et al. Corrosion-wear interaction behavior of TC4 titanium alloy in simulated seawater [J]. Tribology, 2019, 39: 206
[13] (王林青, 周永涛, 王军军 等. TC4钛合金在模拟海水中腐蚀-磨损交互行为研究 [J]. 摩擦学学报, 2019, 39: 206)
[14] Wang D S, Qiang Q, Xia C X, et al. Tribocorrosion behavior of FH36 steel in simulated seawater with different salinity [J]. Tribology, 2023, 43: 64
[14] (王东胜, 强 强, 夏呈祥 等. FH36钢在不同盐度模拟海水中的摩擦腐蚀行为研究 [J]. 摩擦学学报, 2023, 43: 64)
[15] Shi L. Mechanism of wear and corrosion properties and protection of FH36 steel used in shipbuilding [D]. Shanghai: Shanghai Maritime University, 2023
[15] (石 亮. 船用FH36钢的磨损腐蚀机制及防护研究 [D]. 上海: 上海海事大学, 2023)
[16] Watson S W, Friedersdorf F J, Madsen B W, et al. Methods of measuring wear-corrosion synergism [J]. Wear, 1995, 181-183: 476
[17] López-Ortega A, Bayón R, Arana J L, et al. Influence of temperature on the corrosion and tribocorrosion behaviour of High-Strength Low-Alloy steels used in offshore applications [J]. Tribol. Int., 2018, 121: 341
[18] Xie H M, Li G M, Hu L Y, et al. Influence of load and electrode potential on the tribocorrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy in seawater [J]. Mater. Rev., 2025, 39(6): 205
[18] (谢浩民, 李光明, 胡凌越 等. 载荷和电位对Ti-6Al-3Nb-2Zr-1Mo合金在海水中腐蚀磨损行为的影响 [J]. 材料导报, 2025, 39(6): 205)
[19] Huttunen-Saarivirta E, Kilpi L, Hakala T J, et al. Tribocorrosion study of martensitic and austenitic stainless steels in 0.01 M NaCl solution [J]. Tribol. Int., 2016, 95: 358
[20] Dong H. Microstructure and properties of steel for ship fabricated by wire-arc addtitive manufacturing [D]. Shenyang: Shenyang Aerospace University, 2023
[20] (董 昊. 电弧熔丝增材制造船用钢组织性能研究 [D]. 沈阳: 沈阳航空航天大学, 2023)
[21] Cui Q, Lin X P, Wen B, et al. Effect of high-pressure quenching on pure-iron martensite transformation and its strengthening mechanism [J]. ISIJ Int., 2022, 62: 2374
[22] Fan S C. Research on shape and properties control of CMT arc additive remanufacturing 921A steel [D]. Zibo: Shandong University of Technology, 2023
[22] (樊世冲. CMT电弧增材再制造921A钢形性调控研究 [D]. 淄博: 山东理工大学, 2023)
[23] Wang Z H. High pressure martensitic transformation study of IF steel [D]. Qinhuangdao: Yanshan University, 2023
[23] (王作华. IF钢的高压马氏体相变研究 [D]. 秦皇岛: 燕山大学, 2023)
[24] Xu X X. Corrosion fatigue mechanism and corrosion fatigue life prediction of microalloyed 780 MPa high-strength marine engineering steel [D]. Beijing: University of Science and Technology Beijing, 2022
[24] (徐学旭. 微合金化780 MPa高强度海工钢腐蚀疲劳机理与寿命预测研究 [D]. 北京: 北京科技大学, 2022)
[25] Wang Z N. Study of the corrosion and tribocorrosion behavior of Ti-Zr-Nb-Ta multi-principal element alloys [D]. Beijing: University of Science and Technology Beijing, 2022
[25] (王泽宁. Ti-Zr-Nb-Ta系多主元合金腐蚀与磨蚀行为研究 [D]. 北京: 北京科技大学, 2022)
[26] Wang Y F, Zhou X J, Song Z H, et al. Microstructure and tribocorrosion properties of Cr-W-Mo-V coating fabricated via laser hot-wire cladding [J]. China Surf. Eng., 2024, 37(3): 25
[26] (王彦芳, 周雪景, 宋子翰 等. 热丝激光熔覆Cr-W-Mo-V钢涂层组织与腐蚀磨损性能 [J]. 中国表面工程, 2024, 37(3): 25)
doi: 10.11933/j.issn.1007-9289.20230831001
[27] Aghababaei R, Warner D H, Molinari J F. Critical length scale controls adhesive wear mechanisms [J]. Nat. Commun., 2016, 7: 11816
doi: 10.1038/ncomms11816 pmid: 27264270
[28] Aghababaei R, Warner D H, Molinari J F. On the debris-level origins of adhesive wear [J]. Proc. Natl. Acad. Sci. USA, 2017, 114: 7935
doi: 10.1073/pnas.1700904114 pmid: 28696291
[29] Zhang B B, Wang J Z, Zhang Y, et al. Comparison of tribocorrosion behavior between 304 austenitic and 410 martensitic stainless steels in artificial seawater [J]. RSC Adv., 2016, 6: 107933
[30] Liu Z, Liu E Y, Du S M, et al. Tribocorrosion behavior of typical austenitic, martensitic, and ferritic stainless steels in 3.5%NaCl solution [J]. J. Mater. Eng. Perform., 2021, 30: 6284
doi: 10.1007/s11665-021-05846-6
[31] Zhang H B, Etsion I. An advanced efficient model for adhesive wear in elastic-plastic spherical contact [J]. Friction, 2022, 10: 1276
[32] Runa M J, Mathew M T, Rocha L A. Tribocorrosion response of the Ti6Al4V alloys commonly used in femoral stems [J]. Tribol. Int., 2013, 68: 85
[33] Toptan F, Alves A C, Carvalho Ó, et al. Corrosion and tribocorrosion behaviour of Ti6Al4V produced by selective laser melting and hot pressing in comparison with the commercial alloy [J]. J. Mater. Process. Technol., 2019, 266: 239
[34] Dong B J, Dong C L, Bai X Q, et al. Corrosion and wear behavior of mooring chain steel in artificial seawater solution [J]. Surf. Technol., 2022, 51(5): 40
[34] (董彬杰, 董从林, 白秀琴 等. 人工海水溶液中系泊链钢的腐蚀磨损行为 [J]. 表面技术, 2022, 51(5): 40)
[35] Ye Y W, Wang Y X, Ma X L, et al. Tribocorrosion behaviors of multilayer PVD DLC coated 304L stainless steel in seawater [J]. Diam. Relat. Mater., 2017, 79: 70
[36] Tekin K C, Malayoglu U. Assessing the tribocorrosion performance of three different nickel-based superalloys [J]. Tribol. Lett., 2010, 37: 563
[37] Sun Y, Rana V. Tribocorrosion behaviour of AISI 304 stainless steel in 0.5 M NaCl solution [J]. Mater. Chem. Phys., 2011, 129: 138
[38] Fan Y. Research on microstructure modification and corrosion wear properties of 4Cr13 corrosion resistance plastic mold steel [D]. Beijing: Central Iron & Steel Research Institute, 2024
[38] (樊 译. 4Cr13型耐蚀塑料模具钢组织均匀性调控与腐蚀磨损机理研究 [D]. 北京: 钢铁研究总院, 2024)
[39] Fajardo S, Llorente I, Jiménez J A, et al. Effect of Mn additions on the corrosion behaviour of TWIP Fe-Mn-Al-Si austenitic steel in chloride solution [J]. Corros. Sci., 2019, 154: 246
doi: 10.1016/j.corsci.2019.04.026
[40] Qiang R, Leong A, Zhang J S, et al. Corrosion behavior of Fe-Cr-Si alloys in simulated PWR primary water environment [J]. J. Nucl. Mater., 2019, 526: 151735
[41] Zhang B B, Wang J Z, Zhang Y, et al. Tribocorrosion behavior of 410SS in artificial seawater: effect of applied potential [J]. Mater. Corros., 2017, 68: 295
[42] Jun C. Corrosion wear characteristics of TC4, 316 stainless steel, and monel K500 in artificial seawater [J]. RSC Adv., 2017, 7: 23835
[43] López-Ortega A, Arana J L, Bayón R. Tribocorrosion of passive materials: a review on test procedures and standards [J]. Int. J. Corros., 2018, 2018: 7345346
[44] Parker M E, Horton D J, Wahl K J. Tribocorrosion behavior of 2205 duplex stainless steel in sodium chloride and sodium sulfate environments [J]. Tribol. Lett., 2022, 70: 70
[45] Lee P N, Fry J S, Forey B A. A review of the evidence on smoking bans and incidence of heart disease [J]. Regul. Toxicol. Pharmacol., 2014, 70: 7
[1] 曹甫洋, 王浩权, 季谦, 丁恒楠, 袁志钟, 罗锐. 大气等离子喷涂FeCoCrNiMn高熵合金涂层的耐海水腐蚀与磨损性能[J]. 中国腐蚀与防护学报, 2024, 44(6): 1529-1537.
[2] 孙士斌, 史常伟, 王东胜, 常雪婷, 李明春. 新型环氧基极地船舶用破冰涂料低温耐磨耐蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1177-1188.
[3] 王永欣, 汪艺璇, 陈春林, 李祥, 贺南开, 李金龙. 具有“层中层”结构的Zr/[Al(Si)N/CrN]涂层制备及其在海水环境中腐蚀磨损特性[J]. 中国腐蚀与防护学报, 2022, 42(3): 345-357.
[4] 王超逸, 夏呈祥, 王东胜, 强强, 赵子铭, 常雪婷. 新型F级船用低温钢表面氧化物对其耐磨性能影响研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 395-402.
[5] 宋亓宁, 武竹雨, 李慧琳, 佟瑶, 许楠, 包晔峰. 激光重熔对高锰铝青铜在3.5%NaCl溶液中空蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 877-882.
[6] 佟瑶, 宋亓宁, 李慧琳, 许楠, 包晔峰, 张根元, 赵立娟. 三种典型船舶螺旋桨用铜合金的空蚀行为对比研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 639-645.
[7] 胡宗武, 刘建国, 邢蕊, 尹法波. 单相流条件下90°水平弯管冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
[8] 余仁强,何建军,李微,任延杰,杨旺. 火电厂循环泵叶轮材料Cr30A在脱硫浆液腐蚀环境中的交互损伤失效行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 353-358.
[9] 陶永奇,刘刚,黎业生,曾志翔. 海水环境下2024铝合金腐蚀磨损性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 587-594.
[10] 陈君, 李全安, 张清, 王建章, 阎逢元. AISI 316不锈钢腐蚀磨损交互作用的研究[J]. 中国腐蚀与防护学报, 2014, 34(5): 433-438.
[11] 乔岩欣,刘飞华,任爱,姜胜利,郑玉贵. 高氮钢和321不锈钢的冲刷腐蚀行为[J]. 中国腐蚀与防护学报, 2012, 32(2): 141-145.
[12] 董泽华,何金杯,郭兴蓬,张耀享,汉继成. 环烷酸与有机硫对Cr5Mo钢高温腐蚀的交互作用研究[J]. 中国腐蚀与防护学报, 2011, 31(3): 219-224.
[13] 柳伟; 郑玉贵; 敬和民 . 20SiMn在单相液流和液固双相流中的空蚀行为[J]. 中国腐蚀与防护学报, 2001, 21(5): 286-290 .
[14] 陈俊明;吕战鹏. 有、无磁场下缓蚀剂对Fe/0.05mol· L~(-1)HCl极化行为的影响[J]. 中国腐蚀与防护学报, 1997, 17(2): 135-141.
[15] 王吉会;姜晓霞;李诗卓. 铜合金在3.5%NaCl+S~(2-)溶液中的腐蚀磨损行为[J]. 中国腐蚀与防护学报, 1997, 17(2): 81-86.