|
|
极地航行船舶用高强钢的磨损腐蚀交互作用机制 |
杨淞普1, 黄诗雨1, 李刚2, 林一3, 郭娜1, 刘涛1( ), 董丽华1 |
1 上海海事大学海洋科学与工程学院 上海 201306 2 中国航空综合技术研究所 北京 100028 3 中国核能电力股份有限公司 北京 100000 |
|
Interaction Behavior of Wear and Corrosion of High-strength Marine Steels for Polar Navigation Vessels |
YANG Songpu1, HUANG Shiyu1, LI Gang2, LIN Yi3, GUO Na1, LIU Tao1( ), DONG Lihua1 |
1 College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China 2 China Aero Poly-technology Establishment, Beijing 100028, China 3 China National Nuclear Power Co., Ltd., Beijing 100000, China |
引用本文:
杨淞普, 黄诗雨, 李刚, 林一, 郭娜, 刘涛, 董丽华. 极地航行船舶用高强钢的磨损腐蚀交互作用机制[J]. 中国腐蚀与防护学报, 2025, 45(4): 894-904.
Songpu YANG,
Shiyu HUANG,
Gang LI,
Yi LIN,
Na GUO,
Tao LIU,
Lihua DONG.
Interaction Behavior of Wear and Corrosion of High-strength Marine Steels for Polar Navigation Vessels[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 894-904.
[1] |
Shi G J, Feng J G, Kang M Z, et al. Polar offshore engineering equipment: development status and key technologies [J]. Strategic Study CAE, 2021, 23(3): 144
|
[1] |
(师桂杰, 冯加果, 康美泽 等. 极地海洋工程装备的应用现状及关键技术分析 [J]. 中国工程科学, 2021, 23(3): 144)
doi: 10.15302/J-SSCAE-2021.03.021
|
[2] |
Xu H Y, An L Q, Dong L H, et al. Research progress in tribology of materials in polar marine environment [J]. Surf. Technol., 2023, 52(12): 260
|
[2] |
(徐昊钺, 安丽琼, 董丽华 等. 极地海洋环境服役材料的摩擦学研究进展 [J]. 表面技术, 2023, 52(12): 260)
|
[3] |
Mao X M, Guo N, Sun Z M, et al. Study on corrosion behavior of marine EH40 steel by polar cryogenic microorganisms [J]. Surf. Technol., 2025, 54(4): 70
|
[3] |
(毛晓敏, 郭 娜, 孙振美 等. 极地低温微生物对船用EH40钢的腐蚀行为研究 [J]. 表面技术, 2025, 54(4): 70)
|
[4] |
Sun S B, Wang X, Kang J, et al. Erosion-wear resistance of DH32 steel under ice load in simulated polar ice-breaking environment [J]. Tribology, 2021, 41: 493
|
[4] |
(孙士斌, 王 鑫, 康 健 等. DH32船用钢板在模拟极地破冰环境中的冰载荷冲蚀磨损性能研究 [J]. 摩擦学学报, 2021, 41: 493)
|
[5] |
Xiong J C, Zhang X D, Wang Y H. Research progress on ultra-low temperature steels: a review on their composition, microstructure, and mechanical properties [J]. Metals, 2023, 13: 2007
|
[6] |
Bai P H, Shang C L, Wu H H, et al. A review on the advance of low-temperature toughness in pipeline steels [J]. J. Mater. Res. Technol., 2023, 25: 6949
|
[7] |
Choi Y Y, Kim M H. Corrosion behaviour of welded low-carbon steel in the Arctic marine environment [J]. RSC Adv., 2018, 8: 30155
|
[8] |
Guo Z W, Hui X R, Zhao Q Y, et al. Pigmented Pseudoalteromonas piscicida exhibited dual effects on steel corrosion: Inhibition of uniform corrosion and induction of pitting corrosion [J]. Corros. Sci., 2021, 190: 109687
|
[9] |
Li M, Wu H J, Sun Y H. Influence of non-metallic inclusions on corrosive properties of polar steel [J]. Front. Mater., 2021, 8: 602851
|
[10] |
Xiao Q L, Xie Y Z, Hu F, et al. Current status and trends of low-temperature steel used in polar regions [J]. Materials (Basel), 2024, 17: 3117
|
[11] |
Wang Z G, Huang W J, Li Y, et al. Tribocorrosion behaviour of a biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in ringer's solution [J]. Mater. Sci. Eng., 2017, 76C: 1094
|
[12] |
Wang Z G, Zhou Y T, Wang H N, et al. Tribocorrosion behavior of Ti-30Zr alloy for dental implants [J]. Mater. Lett., 2018, 218: 190
|
[13] |
Wang L Q, Zhou Y T, Wang J J, et al. Corrosion-wear interaction behavior of TC4 titanium alloy in simulated seawater [J]. Tribology, 2019, 39: 206
|
[13] |
(王林青, 周永涛, 王军军 等. TC4钛合金在模拟海水中腐蚀-磨损交互行为研究 [J]. 摩擦学学报, 2019, 39: 206)
|
[14] |
Wang D S, Qiang Q, Xia C X, et al. Tribocorrosion behavior of FH36 steel in simulated seawater with different salinity [J]. Tribology, 2023, 43: 64
|
[14] |
(王东胜, 强 强, 夏呈祥 等. FH36钢在不同盐度模拟海水中的摩擦腐蚀行为研究 [J]. 摩擦学学报, 2023, 43: 64)
|
[15] |
Shi L. Mechanism of wear and corrosion properties and protection of FH36 steel used in shipbuilding [D]. Shanghai: Shanghai Maritime University, 2023
|
[15] |
(石 亮. 船用FH36钢的磨损腐蚀机制及防护研究 [D]. 上海: 上海海事大学, 2023)
|
[16] |
Watson S W, Friedersdorf F J, Madsen B W, et al. Methods of measuring wear-corrosion synergism [J]. Wear, 1995, 181-183: 476
|
[17] |
López-Ortega A, Bayón R, Arana J L, et al. Influence of temperature on the corrosion and tribocorrosion behaviour of High-Strength Low-Alloy steels used in offshore applications [J]. Tribol. Int., 2018, 121: 341
|
[18] |
Xie H M, Li G M, Hu L Y, et al. Influence of load and electrode potential on the tribocorrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy in seawater [J]. Mater. Rev., 2025, 39(6): 205
|
[18] |
(谢浩民, 李光明, 胡凌越 等. 载荷和电位对Ti-6Al-3Nb-2Zr-1Mo合金在海水中腐蚀磨损行为的影响 [J]. 材料导报, 2025, 39(6): 205)
|
[19] |
Huttunen-Saarivirta E, Kilpi L, Hakala T J, et al. Tribocorrosion study of martensitic and austenitic stainless steels in 0.01 M NaCl solution [J]. Tribol. Int., 2016, 95: 358
|
[20] |
Dong H. Microstructure and properties of steel for ship fabricated by wire-arc addtitive manufacturing [D]. Shenyang: Shenyang Aerospace University, 2023
|
[20] |
(董 昊. 电弧熔丝增材制造船用钢组织性能研究 [D]. 沈阳: 沈阳航空航天大学, 2023)
|
[21] |
Cui Q, Lin X P, Wen B, et al. Effect of high-pressure quenching on pure-iron martensite transformation and its strengthening mechanism [J]. ISIJ Int., 2022, 62: 2374
|
[22] |
Fan S C. Research on shape and properties control of CMT arc additive remanufacturing 921A steel [D]. Zibo: Shandong University of Technology, 2023
|
[22] |
(樊世冲. CMT电弧增材再制造921A钢形性调控研究 [D]. 淄博: 山东理工大学, 2023)
|
[23] |
Wang Z H. High pressure martensitic transformation study of IF steel [D]. Qinhuangdao: Yanshan University, 2023
|
[23] |
(王作华. IF钢的高压马氏体相变研究 [D]. 秦皇岛: 燕山大学, 2023)
|
[24] |
Xu X X. Corrosion fatigue mechanism and corrosion fatigue life prediction of microalloyed 780 MPa high-strength marine engineering steel [D]. Beijing: University of Science and Technology Beijing, 2022
|
[24] |
(徐学旭. 微合金化780 MPa高强度海工钢腐蚀疲劳机理与寿命预测研究 [D]. 北京: 北京科技大学, 2022)
|
[25] |
Wang Z N. Study of the corrosion and tribocorrosion behavior of Ti-Zr-Nb-Ta multi-principal element alloys [D]. Beijing: University of Science and Technology Beijing, 2022
|
[25] |
(王泽宁. Ti-Zr-Nb-Ta系多主元合金腐蚀与磨蚀行为研究 [D]. 北京: 北京科技大学, 2022)
|
[26] |
Wang Y F, Zhou X J, Song Z H, et al. Microstructure and tribocorrosion properties of Cr-W-Mo-V coating fabricated via laser hot-wire cladding [J]. China Surf. Eng., 2024, 37(3): 25
|
[26] |
(王彦芳, 周雪景, 宋子翰 等. 热丝激光熔覆Cr-W-Mo-V钢涂层组织与腐蚀磨损性能 [J]. 中国表面工程, 2024, 37(3): 25)
doi: 10.11933/j.issn.1007-9289.20230831001
|
[27] |
Aghababaei R, Warner D H, Molinari J F. Critical length scale controls adhesive wear mechanisms [J]. Nat. Commun., 2016, 7: 11816
doi: 10.1038/ncomms11816
pmid: 27264270
|
[28] |
Aghababaei R, Warner D H, Molinari J F. On the debris-level origins of adhesive wear [J]. Proc. Natl. Acad. Sci. USA, 2017, 114: 7935
doi: 10.1073/pnas.1700904114
pmid: 28696291
|
[29] |
Zhang B B, Wang J Z, Zhang Y, et al. Comparison of tribocorrosion behavior between 304 austenitic and 410 martensitic stainless steels in artificial seawater [J]. RSC Adv., 2016, 6: 107933
|
[30] |
Liu Z, Liu E Y, Du S M, et al. Tribocorrosion behavior of typical austenitic, martensitic, and ferritic stainless steels in 3.5%NaCl solution [J]. J. Mater. Eng. Perform., 2021, 30: 6284
doi: 10.1007/s11665-021-05846-6
|
[31] |
Zhang H B, Etsion I. An advanced efficient model for adhesive wear in elastic-plastic spherical contact [J]. Friction, 2022, 10: 1276
|
[32] |
Runa M J, Mathew M T, Rocha L A. Tribocorrosion response of the Ti6Al4V alloys commonly used in femoral stems [J]. Tribol. Int., 2013, 68: 85
|
[33] |
Toptan F, Alves A C, Carvalho Ó, et al. Corrosion and tribocorrosion behaviour of Ti6Al4V produced by selective laser melting and hot pressing in comparison with the commercial alloy [J]. J. Mater. Process. Technol., 2019, 266: 239
|
[34] |
Dong B J, Dong C L, Bai X Q, et al. Corrosion and wear behavior of mooring chain steel in artificial seawater solution [J]. Surf. Technol., 2022, 51(5): 40
|
[34] |
(董彬杰, 董从林, 白秀琴 等. 人工海水溶液中系泊链钢的腐蚀磨损行为 [J]. 表面技术, 2022, 51(5): 40)
|
[35] |
Ye Y W, Wang Y X, Ma X L, et al. Tribocorrosion behaviors of multilayer PVD DLC coated 304L stainless steel in seawater [J]. Diam. Relat. Mater., 2017, 79: 70
|
[36] |
Tekin K C, Malayoglu U. Assessing the tribocorrosion performance of three different nickel-based superalloys [J]. Tribol. Lett., 2010, 37: 563
|
[37] |
Sun Y, Rana V. Tribocorrosion behaviour of AISI 304 stainless steel in 0.5 M NaCl solution [J]. Mater. Chem. Phys., 2011, 129: 138
|
[38] |
Fan Y. Research on microstructure modification and corrosion wear properties of 4Cr13 corrosion resistance plastic mold steel [D]. Beijing: Central Iron & Steel Research Institute, 2024
|
[38] |
(樊 译. 4Cr13型耐蚀塑料模具钢组织均匀性调控与腐蚀磨损机理研究 [D]. 北京: 钢铁研究总院, 2024)
|
[39] |
Fajardo S, Llorente I, Jiménez J A, et al. Effect of Mn additions on the corrosion behaviour of TWIP Fe-Mn-Al-Si austenitic steel in chloride solution [J]. Corros. Sci., 2019, 154: 246
doi: 10.1016/j.corsci.2019.04.026
|
[40] |
Qiang R, Leong A, Zhang J S, et al. Corrosion behavior of Fe-Cr-Si alloys in simulated PWR primary water environment [J]. J. Nucl. Mater., 2019, 526: 151735
|
[41] |
Zhang B B, Wang J Z, Zhang Y, et al. Tribocorrosion behavior of 410SS in artificial seawater: effect of applied potential [J]. Mater. Corros., 2017, 68: 295
|
[42] |
Jun C. Corrosion wear characteristics of TC4, 316 stainless steel, and monel K500 in artificial seawater [J]. RSC Adv., 2017, 7: 23835
|
[43] |
López-Ortega A, Arana J L, Bayón R. Tribocorrosion of passive materials: a review on test procedures and standards [J]. Int. J. Corros., 2018, 2018: 7345346
|
[44] |
Parker M E, Horton D J, Wahl K J. Tribocorrosion behavior of 2205 duplex stainless steel in sodium chloride and sodium sulfate environments [J]. Tribol. Lett., 2022, 70: 70
|
[45] |
Lee P N, Fry J S, Forey B A. A review of the evidence on smoking bans and incidence of heart disease [J]. Regul. Toxicol. Pharmacol., 2014, 70: 7
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|