Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 881-893     CSTR: 32134.14.1005.4537.2024.228      DOI: 10.11902/1005.4537.2024.228
  研究报告 本期目录 | 过刊浏览 |
聚四氟乙烯对风电叶片聚氨酯涂层耐磨与耐雨蚀性能影响及损伤机制研究
郑子龙1, 孙海静1(), 薛伟海2, 陈国亮1, 周欣1, 王进军3, 段德莉2, 孙杰1
1 沈阳理工大学环境与化学工程学院 沈阳 110159
2 中国科学院金属研究所 沈阳 110016
3 沈阳飞机工业(集团)有限公司 沈阳 110034
Effects and Damage Mechanisms of Polytetrafluoroethylene on Wear and Rain Erosion Resistance of Polyurethane Coatings for Wind Turbine Blades
ZHENG Zilong1, SUN Haijing1(), XUE Weihai2, CHEN Guoliang1, ZHOU Xin1, WANG Jinjun3, DUAN Deli2, SUN Jie1
1 School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Avic Shenyang Aircraft Corporation, Shenyang 110034, China
引用本文:

郑子龙, 孙海静, 薛伟海, 陈国亮, 周欣, 王进军, 段德莉, 孙杰. 聚四氟乙烯对风电叶片聚氨酯涂层耐磨与耐雨蚀性能影响及损伤机制研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 881-893.
Zilong ZHENG, Haijing SUN, Weihai XUE, Guoliang CHEN, Xin ZHOU, Jinjun WANG, Deli DUAN, Jie SUN. Effects and Damage Mechanisms of Polytetrafluoroethylene on Wear and Rain Erosion Resistance of Polyurethane Coatings for Wind Turbine Blades[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 881-893.

全文: PDF(30474 KB)   HTML
摘要: 

在风电叶片保护涂层中添加聚四氟乙烯(PTFE)常用于提高涂层的耐磨性、疏水性、抗结冰性等,然而却鲜有研究关注PTFE添加对耐雨蚀性能的影响。本文测试了含0%~5%PTFE的聚氨酯(PU)涂层的基本性能,使用扫描电镜(SEM)和能谱分析仪(EDS)重点探究了PTFE对涂层耐磨性与耐雨蚀性能的影响。耐磨性实验显示,涂层耐磨性随PTFE含量增加而提升,含5%时最佳。液滴冲蚀实验显示,与未添加PTFE的涂层相比,添加1%~2%PTFE的涂层耐冲蚀性变化不大,添加3%~5%PTFE的涂层耐冲蚀性急剧下降。SEM与EDS表明,涂层表面F元素聚集的位置萌生了针孔、起皮、剥落坑等缺陷,其数量随PTFE含量增大而增加。在耐磨性实验中,表面缺陷的存在能够存储碎屑使得涂层耐磨性提升;在液滴冲蚀实验中,液滴冲击涂层表面缺陷会加速涂层脱落,降低涂层的耐冲蚀性。

关键词 PTFEPU涂层耐雨蚀性耐磨性F元素聚集    
Abstract

Under actual operating conditions of wind turbine blades, rain erosion causes extremely severe damage to the coatings on wind turbine blades. Polytetrafluoroethylene (PTFE) is often used to enhance the wear resistance, hydrophobicity, anti-icing, and anti-sand erosion properties of coatings. However, research on the impact of PTFE on the rain erosion resistance of coatings is lacking. Therefore, this study investigates the impact of PTFE on the wear resistance and rain erosion resistance of polyurethane (PU) protective coatings on wind turbine blades, as well as the damage mechanisms of these coatings. This study prepared PU coatings with different PTFE contents, tested the basic properties of the PU coatings. Additionally, the study explored the impact of varying amounts of PTFE on the erosion resistance of PU coatings under two different erosion conditions using a high-speed liquid drop erosion device. The study used a profilometer to characterize the macroscopic morphology of the coatings and measure the volume loss. It employed scanning electron microscopy (SEM) to observe the microstructure of the coatings, and combined with energy-dispersive X-ray spectroscopy (EDS) to analyze how PTFE influences the wear resistance and rain erosion resistance of the coatings. The wear resistance tests showed that the coating's wear resistance improved with increasing PTFE content, with the best performance observed at a mass fraction of 5%. The liquid drop erosion tests revealed that, compared to coatings without PTFE, coatings with 1%-2%PTFE exhibited little change in erosion resistance. However, coatings with 3%-5%PTFE experienced a sharp decrease in erosion resistance. SEM and EDS analysis indicated that fluorine (F) elements accumulated at specific locations on the coating surface, leading to the formation of defects such as pinholes, peeling, and delamination pits. Moreover, higher PTFE content in the coating correlated with an increased presence of surface defects.

Key wordsPTFE    PU coating    rain erosion resistance    wear resistance    fluorine aggregation
收稿日期: 2024-07-27      32134.14.1005.4537.2024.228
ZTFLH:  TG174  
基金资助:辽宁省教育厅高等学校基本科研面上项目(LJKMZ20220598);辽宁省属本科高校基本科研业务费专项(SYLUGXRC26)
通讯作者: 孙海静,E-mail:hjsun@sylu.edu.cn,研究方向为表面处理
Corresponding author: SUN Haijing, E-mail: hjsun@sylu.edu.cn
作者简介: 郑子龙,男,2000年生,硕士生
ComponentRaw materialsMass fraction / %
1HTPB30
2Titanium dioxide23
3Butyl acetate10
4UV absorber1
Component A5Anti-settling agent0.25
6Wetting and dispersing agent0.25
7Defoamer0.25
8Levelling agent0.25
9PTFE0~5
Component B10IPDI30
表1  风电叶片PU涂料的基本配方
图1  样品制备与试验测试流程
图2  高速液滴冲蚀装置示意图
图3  不同喷嘴的三维形貌及相应冲蚀示意图
Coating propertiesRequirementTest standard
Gloss (60°) / %≤ 30GB/T 1743
Pencil hardness≥ HGB/T 6739
Adhesion / level≤ 1GB/T 9286
Impact resistance / kg·cm> 50GB/T 1732
Flexibility / mm≤ 1GB/T 1731
Wear resistance / [(CS10, 1000 g/1000 r)]mg< 60GB/T 1768
Elongation at break / %≥ 10ISO 157-2
Tensile strength / MPa-ISO 157-2
Water resistance / 7 dNo foaming, no wrinkling, allowed slight discolorationGB/T 4893.1
Acid resistance / (0.05 mol/L H2SO4) 7 dNo foaming, no wrinkling, allowed slight discolorationGB/T 9274
Alkali resistance / (0.1 mol/L NaOH) 7 dNo foaming, no wrinkling, allowed slight discolorationGB/T 9274
表2  风电叶片涂层基本性能要求与检测标准
Coating propertiesPTFE content / %Test results
01235
Gloss (60°) / %21.522.322.823.524.2Qualified
Pencil hardness4H4H4H4H4HQualified
Adhesion / level00000Qualified
Impact resistance / kg·cm100100909085Qualified
Flexibility / mm0.50.5111Qualified
Wear resistance / [(CS10, 1000 g/1000 r)] mg151413107Qualified
Elongation at break / %20.721.322.524.827.2Qualified
Tensile strength / MPa5.45.25.14.54.0Qualified
Water resistance / 7 dUnchangedUnchangedUnchangedUnchangedUnchangedQualified
Acid resistance / (0.05 mol/L H2SO4) 7 dUnchangedUnchangedUnchangedUnchangedUnchangedQualified
Alkali resistance / (0.1 mol/L NaOH) 7 dUnchangedUnchangedUnchangedUnchangedUnchangedQualified
表3  不同PTFE含量的PU涂层的性能检测结果
图4  不同PTFE含量的PU涂层的宏观形貌
图5  不同PTFE含量的PU涂层的质量损失随磨损周次的变化
图6  不同PTFE含量的PU涂层在8.3 MPa雾化冲蚀2 h的体积损失变化
图7  不同PTFE含量的PU涂层在2 h雾化冲蚀的不同阶段的表面形貌
图8  不同PTFE含量的PU涂层在不同管道压力下雾化冲蚀30 min的体积损失
图9  不同PTFE含量的PU涂层在不同管道压力下雾化冲蚀30 min后的表面形貌
图10  不同PTFE含量的PU涂层在6.9 MPa管道压力和30°攻角下射流冲蚀30 min的体积损失变化
图11  不同PTFE含量的PU涂层在6.9 MPa管道压力和30°攻角下射流冲蚀不同时间后的表面形貌
图12  PU-5%涂层原始样片的表面形貌及其局部放大处EDS元素分布
图13  雾化冲蚀、射流冲蚀、耐磨性测试下涂层的损伤机制图
PTFE content / %COTiFOther elements
060.7324.1110.9004.26
163.1922.889.930.703.30
258.2921.6512.981.925.16
361.9420.7610.483.173.65
558.9719.6910.955.235.16
表4  不同PTFE含量的PU涂层中各元素占比
图14  不同PTFE含量的PU涂层原始样片的SEM像与EDS分析结果
图15  不同PTFE含量的PU涂层雾化冲蚀2 h后的表面形貌与元素分布
[1] Yang F, Yao Z F, Deng C N, et al. Spatiotemporal variations of global land surface wind speed and wind power energy density from 1950 to 2021 [J]. Resour. Sci., 2023, 45: 2276
[1] (杨 飞, 姚作芳, 邓春暖 等. 1950—2021年全球陆表风速及发电风能时空变化 [J]. 资源科学, 2023, 45: 2276)
[2] Chen X X, Tian Y X. The development trend, advantage potential, and orientation selection of China's new energy industry [J]. Reform, 2024, (5): 112
[2] (陈星星, 田贻萱. 中国新能源产业发展态势、优势潜能与取向选择 [J]. 改革, 2024, (5): 112)
[3] Herbert G M J, Iniyan S, Sreevalsan E, et al. A review of wind energy technologies [J]. Renew. Sustain. Energy Rev., 2007, 11: 1117
[4] Islam M R, Mekhilef S, Saidur R. Progress and recent trends of wind energy technology [J]. Renew. Sustain. Energy Rev., 2013, 21: 456
[5] Lin C. The "global wind energy report 2024" announces the wind power industry entering a new era of accelerated growth [N]. Lectromechanical Business Daily, 2024-04-22 A07
[5] (林 楚. 《全球风能报告2024》发布 风电行业进入加速增长新时代 [N]. 机电商报, 2024-04-22 A07)
[6] Wang L, Liu Y B, Teng W, et al. Research and development of nondestructive detection technology for wind turbine blades [J]. Electr. Power, 2023, 56(10): 80
[6] (王 磊, 柳亦兵, 滕 伟 等. 风电机组叶片无损检测技术研究与进展 [J]. 中国电力, 2023, 56(10): 80)
[7] Martinez A, Iglesias G. Global wind energy resources decline under climate change [J]. Energy, 2024, 288: 129765
[8] Storm B K. Surface protection and coatings for wind turbine rotor blades [A]. BrøndstedP, NijssenR P L. Advances in Wind Turbine Blade Design and Materials [C]. Englewood Cliffs: Woodhead Publishing, 2013: 387
[9] Katsaprakakis D A, Papadakis N, Ntintakis I. A comprehensive analysis of wind turbine blade damage [J]. Energies, 2021, 14: 5974
[10] Li Y J. Study on mechanical behavior and acoustic emission response characteristics of the delamination damage evaluation for wind turbine blades [D]. Baoding: Hebei University, 2015
[10] (李亚娟. 风电叶片分层缺陷演化的力学行为及声发射响应特性研究 [D]. 保定: 河北大学, 2015)
[11] Li P X, Yuan L, Pan L, et al. Research progress of polyurethane coating for MW-level wind turbine blades [J]. Mater. Rep., 2020, 34(): 01594
[11] (李沛欣, 袁 凌, 潘 磊 等. MW级风电叶片用聚氨酯涂料的研究进展 [J]. 材料导报, 2020, 34(): 01594)
[12] Dashtkar A, Hadavinia H, Sahinkaya M N, et al. Rain erosion-resistant coatings for wind turbine blades: A Review [J]. Polym. Polym. Compos., 2019, 27: 443
doi: 10.1177/0967391119848232
[13] Zhang S Z, Dam-Johansen K, Nørkjær S, et al. Erosion of wind turbine blade coatings-Design and analysis of jet-based laboratory equipment for performance evaluation [J]. Prog. Org. Coat., 2015, 78: 103
[14] Zhang L B, Zhang H X, Liu Z J, et al. Nano-silica anti-icing coatings for protecting wind-power turbine fan blades [J]. J. Colloid Interf. Sci., 2023, 630: 1
[15] Jiang B C, Lei Y H, Zhang Y L, et al. Research progress on application of functional superhydrophobic coatings for anti-icing in polar regions [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1
[15] (姜伯晨, 类延华, 张玉良 等. 功能性超疏水涂层在极地抗冰领域的应用研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1)
[16] Mishnaevsky L, Hasager C B, Bak C, et al. Leading edge erosion of wind turbine blades: Understanding, prevention and protection [J]. Renew. Energy, 2021, 169: 953
[17] Li D H, Yang T X, Sun T X, et al. Preparation and anti-corrosion properties of silica aerogel-modified polyurethane composite coatings [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 167
[17] (李丹鸿, 杨腾逊, 孙天翔 等. 改性SiO2气凝胶聚氨酯复合涂层的制备及耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2024, 44: 167)
[18] Li C L, Shi H W, Liang G P, et al. Corrosion resistance and aging mechanism of polyurethane topcoat for high-speed train [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1383
[18] (李春霖, 史洪微, 梁国平 等. 高速列车用聚氨酯面漆耐蚀性能和老化机制研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1383)
doi: 10.11902/1005.4537.2022.377
[19] Zhang S Z, Dam-Johansen K, Bernad P L, et al. Rain erosion of wind turbine blade coatings using discrete water jets: Effects of water cushioning, substrate geometry, impact distance, and coating properties [J]. Wear, 2015, 328-329: 140
[20] Hoksbergen T H, Akkerman R, Baran I. Rain droplet impact stress analysis for leading edge protection coating systems for wind turbine blades [J]. Renew. Energy, 2023, 218: 119328
[21] Yang D X, Lan H J, Yin X Y. Analysis of rain erosion testing technology for wind turbine blades [J]. Compos. Sci. Eng., 2024,(5): 121
[21] (杨德旭, 兰海金, 尹秀云. 风电叶片雨蚀测试技术浅析 [J]. 复合材料科学与工程, 2024, (5): 121)
doi: 10.19936/j.cnki.2096-8000.20240528.017
[22] Blumm J, Lindemann A, Meyer M, et al. Characterization of PTFE using advanced thermal analysis techniques [J]. Int. J. Thermophys., 2010, 31: 1919
[23] Liu F H, Jin Y H, Li J Y, et al. Improved coefficient thermal expansion and mechanical properties of PTFE composites for high-frequency communication [J]. Compos. Sci. Technol., 2023, 241: 110142
[24] Wang M, Lu T, Tan S B, et al. Research progress in surface modification of polytetrafluoroethylene [J]. Chem. Bioeng., 2024, 41(6): 1
[24] (王 苗, 路 涛, 谭少博 等. 聚四氟乙烯的表面改性研究进展 [J]. 化学与生物工程, 2024, 41(6): 1)
[25] Xu B, Liu Q, Qian J C, et al. Protective performance of fluoropolyurethane coating system in simulated marine environment [J]. Surf. Technol., 2022, 51(9): 243
[25] (许 斌, 刘 强, 钱建才 等. 含氟聚氨酯防护涂层体系在模拟海洋环境下的防护性能 [J]. 表面技术, 2022, 51(9): 243)
[26] Özzaim P, Korkusuz O B, Fidan S, et al. Investigation of particle erosion of polytetrafluoroethylene and its composites [J]. Proc. Inst. Mechan. Eng. Part L: J. Mater. Des. Appl., 2022, 236: 1738
[27] Kumar R, Malaval B, Antonov M, et al. Performance of polyimide and PTFE based composites under sliding, erosive and high stress abrasive conditions [J]. Tribol. Int., 2020, 147: 106282
[28] Qin C C, Mulroney A T, Gupta M C. Anti-icing epoxy resin surface modified by spray coating of PTFE Teflon particles for wind turbine blades [J]. Mater. Today Commun., 2020, 22: 100770
[29] Karmouch R, Coudé S, Abel G, et al. Icephobic PTFE coatings for wind turbines operating in cold climate conditions [A]. 2009 IEEE Electrical Power & Energy Conference (EPEC)[C]. Montreal, 2009: 1
[30] Gui Y Q, Ni A Q, Wang J H. Research on wind erosion of wind turbine blades [J]. Chin. J. Appl. Mechan., 2020, 37: 403
[30] (桂永强, 倪爱清, 王继辉. 风机叶片涂层雨蚀研究 [J]. 应用力学学报, 2020, 37: 403)
[31] Gu M B, Jiang X J, Cheng J Q, et al. Preparation and performance study of high wear resistant coating [J]. Synth. Mater. Ag. Appl., 2023, 52(3): 17
[31] (谷美邦, 姜秀杰, 成建强 等. 高耐磨涂料的制备及性能研究 [J]. 合成材料老化与应用, 2023, 52(3): 17)
[32] Wang X K, Su Y F, Cheng Z, et al. Fabrication and wear resistance of robust superhydrophobic composite coating based on porous adhesive layer [J]. Surf. Technol., 2023, 52(11): 63
[32] (汪希奎, 苏一凡, 程 真 等. 基于多孔黏结层的超疏水复合涂层制备及其耐磨性研究 [J]. 表面技术, 2023, 52(11): 63)
[1] 岳锐, 刘咏咏, 杨丽景, 朱兴隆, 陈权昕, 阿那尔, 张青科, 宋振纶. 激光重熔对生物可降解Zn-0.4Mn合金微观结构和性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1127-1134.
[2] 李祥东, 刘昌昊, 张弛, 陈文娟, 崔宸悦, 朱勇文, 王姝舒. WC-Zn复合镀层的工艺设计及其性能研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 795-802.
[3] 肖檬, 王勤英, 张兴寿, 西宇辰, 白树林, 董立谨, 张进, 杨俊杰. 激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[4] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[5] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[6] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[7] 付颖, 张艳, 包星宇, 张伟, 王福会, 辛丽. 钛合金表面耐磨涂层研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 117-123.
[8] 刘学忠,李超,王建飞,田进涛,尹衍升. 碳钢表面化学镀Ni-P及Ni-P-PTFE纳米非晶镀层研究[J]. 中国腐蚀与防护学报, 2010, 30(5): 379-382.