Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (2): 115-122    DOI: 10.11902/1005.4537.2019.002
  研究报告 本期目录 | 过刊浏览 |
单相流条件下90°水平弯管冲刷腐蚀行为研究
胡宗武1, 刘建国2(), 邢蕊3, 尹法波4
1 兰州理工大学石油化工学院 兰州 730050
2 中国石油大学 (华东) 储运与建筑工程学院 青岛 266580
3 兰州中检科测试技术有限公司 兰州 730070
4 青岛欧赛斯环境与安全技术有限责任公司 青岛 266580
Erosion-corrosion Behavior of 90o Horizontal Elbow in Single Phase Flow
HU Zongwu1, LIU Jianguo2(), XING Rui3, YIN Fabo4
1 College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China
3 Lanzhou Testing Technology Co. , Ltd. of Chinese Academy of Inspection and Quarantine, Lanzhou 730070, China
4 Qingdao OASIS Environmental & Safety Technology Co. , Ltd, Qingdao 266580, China
全文: PDF(8044 KB)   HTML
摘要: 

通过自行设计的管流式实验装置,采用失重测量、表面分析等方法,研究了单相流条件下90°水平弯管不同部位的冲刷腐蚀行为。结果表明:单相流条件下,90°水平弯管不同部位的冲刷腐蚀速率主要集中在2.11~3.29 mm/a,弯管的内侧及出口处的外侧冲刷腐蚀比较严重。流动条件下的冲刷腐蚀速率远远大于静止条件下的纯腐蚀速率,机械冲刷对腐蚀过程起到促进作用,介质流动是引起冲刷腐蚀速率大大增加的主要原因。试样表面存在面积较大的冲刷腐蚀坑点和沟槽,沟槽具有明显的方向性,沟槽的方向与局部流体流动的方向一致。

关键词 单相流90°水平弯管冲刷腐蚀交互作用腐蚀形貌    
Abstract

Single phase flow induced erosion-corrosion behavior of 90-degree horizontal elbow was investigated via a loop test device designed independently by means of weight loss measurement and surface analysis methods. The results indicate that the erosion-corrosion rates at different locations of the 90-degree horizontal elbow are different, which vary between 2.11 and 8.90 mm/a. The erosion-corrosion is more serious at the inner part of the elbow and the outer part nearby its outlet. The erosion-corrosion rates induced by single phase flow of 3.5% (mass fraction) NaCl solution are much higher than that in static solution for 20# steel, in other word, the fluid flush promotes the corrosion process, therefore, which is responsible to the significant increase of erosion-corrosion rates. As a consequence, pits and grooves emerged on the surface of steel pieces situated around the inner surface of the elbow, while the grooves show clearly preferred orientation, i.e. their longitudinal axis is consistent with the flow direction of local fluid.

Key wordssingle phase flow    90-degree horizontal elbow    erosion-corrosion    erosion-corrosion interaction    corrosion morphology
收稿日期: 2019-01-07     
ZTFLH:  TG172.2  
基金资助:国家自然科学基金(51301201);山东省自然科学基金(ZR2019MEM014)
通讯作者: 刘建国     E-mail: liujianguo@upc.edu.cn
Corresponding author: LIU Jianguo     E-mail: liujianguo@upc.edu.cn
作者简介: 胡宗武,男,1989年生,硕士

引用本文:

胡宗武, 刘建国, 邢蕊, 尹法波. 单相流条件下90°水平弯管冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
Zongwu HU, Jianguo LIU, Rui XING, Fabo YIN. Erosion-corrosion Behavior of 90o Horizontal Elbow in Single Phase Flow. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 115-122.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.002      或      https://www.jcscp.org/CN/Y2020/V40/I2/115

图1  管流式实验装置示意图
图2  测试弯管剖视图
图3  弯管角度及试样编号示意图
图4  封装试样后的测试弯管实物图
图5  弯管不同部位的冲刷腐蚀速率
图6  环向角φ=90°与φ=270°方向清除腐蚀产物前不同试样表面的冲刷腐蚀形貌
图7  环向角φ=90°与φ=270°方向清除腐蚀产物后不同试样表面的冲刷腐蚀形貌
图8  水平弯管上典型试样的2D及3D冲刷腐蚀形貌
[1] Yong X Y, Lin Y Z. Progress in study on flow-induced corrosion [J]. Corros. Sci. Prot. Technol., 2002, 14: 32
[1] (雍兴跃, 林玉珍. 流动腐蚀研究的新进展 [J]. 腐蚀科学与防护技术, 2002, 14: 32)
[2] Liu J J, Yong X Y, Lin Y Z, et al. Erosion-corrosion behavior of carbon steel in different simulated flowing apparatuses [J]. J. Mater. Prot., 2003, 36(9): 25
[2] (刘景军, 雍兴跃, 林玉珍等. 不同流动体系中碳钢磨损腐蚀可比性的研究 [J]. 材料保护, 2003, 36(9): 25)
[3] Ukpai J I, Barker R, Hu X, et al. Determination of particle impacts and impact energy in the erosion of X65 carbon steel using acoustic emission technique [J]. Tribol. Int., 2013, 65: 161
[4] Chen J, Li Q A, Zhang Q, et al. Sliding wear-corrosion performan-ce of AISI 316 stainless steel against alumina in artificial seawater [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 433
[4] (陈君, 李全安, 张清等. AISI316不锈钢腐蚀磨损交互作用的研究 [J]. 中国腐蚀与防护学报, 2014, 34: 433)
[5] Saleh B, Ahmed S M. Slurry erosion-corrosion of carburized AISI 5117 steel [J]. Tribol. Lett., 2013, 51: 135
[6] Dai Z, Shen S M, Ding G Q. Erosion-corrosion and protection of metals in fluids with solid particles [J]. Corros. Prot., 2007, 28(2): 86
[6] (代真, 沈士明, 丁国铨. 金属在固液两相流体中的冲刷腐蚀及其防护 [J]. 腐蚀与防护, 2007, 28(2): 86)
[7] Zhang G A, Cheng Y F. Electrochemical characterization and computational fluid dynamics simulation of flow-accelerated corrosion of X65 steel in a CO2-saturated oilfield formation water [J]. Corros. Sci., 2010, 52: 2716
[8] Zheng Y G, Yao Z Y, Ke W. Review on the effects of hydrodynamic factors on erosion-corrosion [J]. Corros. Sci. Prot. Technol., 2000, 12: 36
[8] (郑玉贵, 姚治铭, 柯伟. 流体力学因素对冲刷腐蚀的影响机制 [J]. 腐蚀科学与防护技术, 2000, 12: 36)
[9] Zhu J, Zhang Q B, Chen Y, et al. Progress of study on erosion-corrosion [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 199
[9] (朱娟, 张乔斌, 陈宇等. 冲刷腐蚀的研究现状 [J]. 中国腐蚀与防护学报, 2014, 34: 199)
[10] Yang Y, Cheng Y F. Parametric effects on the erosion-corrosion rate and mechanism of carbon steel pipes in oil sands slurry [J]. Wear, 2012, 276/277: 141
[11] Peng W S, Cao X W. Analysis on erosion of pipe bends induced by liquid-solid two-phase flow [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 556
[11] (彭文山, 曹学文. 固体颗粒对液/固两相流弯管冲蚀作用分析 [J]. 中国腐蚀与防护学报, 2015, 35: 556)
[12] Liu J J, Lin Y Z, Tian X L, et al. Numerical simulation of flow induced corrosion of carbon steel in liquid/solid two-phase flow system [J]. J. Chem. Ind. Eng. (China), 2004, 55: 231
[12] (刘景军, 林玉珍, 田兴玲等. 碳钢在固/液两相流条件下流动腐蚀的数值模拟 [J]. 化工学报, 2004, 55: 231)
[13] Stack M M, Abdelrahman S M. A CFD model of particle concentration effects on erosion- corrosion of Fe in aqueous conditions [J]. Wear, 2011, 273: 38
[14] Okhovat A, Heris S Z, Asgarkhani M A H, et al. Modeling and simulation of erosion-corrosion in disturbed two-phase flow through fluid transport pipelines [J]. Arab. J. Sci. Eng., 2014, 39: 1497
[15] Zeng L. Erosion-corrosion mechanism and hydrodynamic characteristics at an elbow of pipelines [D]. Wuhan: Huazhong University of Science and Technology, 2017
[15] (曾莉. 管道弯管段冲刷腐蚀机理与流体动力学特征 [D]. 武汉: 华中科技大学, 2017)
[16] Du Q, Li Y, Zeng X G. Prediction of flow field characteristics of solid-liquid phases and erosion corrosion in elbows of oil-gas pipelines using numerical simulation [J]. Corros. Prot., 2017, 38: 751
[16] (杜强, 李洋, 曾祥国. 数值模拟油气管线弯管处固液两相流场特性及冲刷腐蚀预测 [J]. 腐蚀与防护, 2017, 38: 751)
[17] Cao X W, Peng W S, Xu K, et al. Erosion mechanism of liquid-solid two-phase flow at inner liner of bimetallic composite tube [J]. Oil Gas Storage Transp., 2017, 36: 739
[17] (曹学文, 彭文山, 胥馄等. 双金属复合管内衬层液固两相流冲蚀机理 [J]. 油气储运, 2017, 36: 739)
[18] Malka R, Nešić S, Gulino D A. Erosion-corrosion and synergistic effects in disturbed liquid-particle flow [J]. Wear, 2007, 262: 791
[19] Meng H, Hu X, Neville A. A systematic erosion-corrosion study of two stainless steels in marine conditions via experimental design [J]. Wear, 2007, 263: 355
[20] Tang X, Xu L Y, Cheng Y F. Electrochemical corrosion behavior of X-65 steel in the simulated oil-sand slurry II: Synergism of erosion and corrosion [J]. Corros. Sci., 2008, 50: 1469
[21] Liu J G, BaKeDaShi W, Li Z L, et al. Effect of flow velocity on erosion-corrosion of 90-degree horizontal elbow [J]. Wear, 2017, 376/377: 516
[22] Islam A, Farhat Z N. The synergistic effect between erosion and corrosion of API pipeline in CO2 and saline medium [J]. Tribol. Int., 2013, 68: 26
[23] Hu Z W. Study on erosion-corrosion behavior of 90-degree horizontal elbow in liquid-solid flow [D]. Qingdao: China University of Petroleum, 2016
[23] (胡宗武. 液固两相流条件下90度水平弯管冲刷腐蚀行为研究 [D]. 青岛: 中国石油大学(华东), 2016)
[24] Zeng L, Zhang G A, Guo X P. Erosion-corrosion at different locations of X65 carbon steel elbow [J]. Corros. Sci., 2014, 85: 318
[25] Jiang S, Zhang J W, Wu C J, et al. Numerical simulation of inner flow in 90° bending duct of circular-section based on FLUENT [J]. Chin. J. Ship Res., 2008, 3: 37
[25] (江山, 张京伟, 吴崇健等. 基于FLUENT的90°圆形弯管内部流场分析 [J]. 中国舰船研究, 2008, 3: 37)
[26] El-Gammal M, Mazhar H, Cotton J S, et al. The hydrodynamic effects of single-phase flow on flow accelerated corrosion in a 90-degree elbow [J]. Nucl. Eng. Des., 2010, 240: 1589
[1] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[2] 余仁强,何建军,李微,任延杰,杨旺. 火电厂循环泵叶轮材料Cr30A在脱硫浆液腐蚀环境中的交互损伤失效行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 353-358.
[3] 姜爱国,张建文,辛亚男,丛晓明,董轼. 加氢裂化空冷器管束多相流冲刷腐蚀数值模拟[J]. 中国腐蚀与防护学报, 2019, 39(2): 192-200.
[4] 孔祥峰, 张婧, 姜源庆, 褚东志, 李春虎, 高楠, 吕婧, 邹妍. 基于失重法的水下焊接接头腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 226-232.
[5] 陶永奇,刘刚,黎业生,曾志翔. 海水环境下2024铝合金腐蚀磨损性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 587-594.
[6] 魏木孟,杨博均,刘洋洋,王孝平,姚敬华,高灵清. Cu-Ni合金管海水冲刷腐蚀研究现状及展望[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.
[7] 彭文山,曹学文. 固体颗粒对液/固两相流弯管冲蚀作用分析[J]. 中国腐蚀与防护学报, 2015, 35(6): 556-562.
[8] 刘贵群, 郑玉贵, 姜胜利, 荆军航, 董伟娟, 曾宏, 司品宪. 模拟炼油环境中Q235钢和Cr5Mo钢表面硫化物膜稳定性及动态冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 122-128.
[9] 叶超, 杜楠, 田文明, 赵晴, 朱丽. pH值对304不锈钢在3.5%NaCl溶液中点蚀过程的影响[J]. 中国腐蚀与防护学报, 2015, 35(1): 38-42.
[10] 周婷婷, 袁成清, 曹攀, 王雪君, 董从林. 柴油机喷油嘴内流体冲刷腐蚀的数值模拟分析[J]. 中国腐蚀与防护学报, 2014, 34(6): 574-580.
[11] 李强, 唐晓, 李焰. 冲刷腐蚀研究方法进展[J]. 中国腐蚀与防护学报, 2014, 34(5): 399-409.
[12] 陈君, 李全安, 张清, 王建章, 阎逢元. AISI 316不锈钢腐蚀磨损交互作用的研究[J]. 中国腐蚀与防护学报, 2014, 34(5): 433-438.
[13] 程从前, 曹铁山, 王冬颖, 姚景文, 王健, 关锰, 赵杰. Cr13不锈钢在盐酸溶液喷射冲刷作用下的表面腐蚀形貌表征[J]. 中国腐蚀与防护学报, 2014, 34(5): 439-444.
[14] 吴堂清, 杨圃, 张明德, 许进, 闫茂成, 于长坤, 孙成. 酸性土壤浸出液中X80钢微生物腐蚀研究:(II) 腐蚀形貌和产物分析[J]. 中国腐蚀与防护学报, 2014, 34(4): 353-358.
[15] 朱娟, 张乔斌, 陈宇, 张昭, 张鉴清, 曹楚南. 冲刷腐蚀的研究现状[J]. 中国腐蚀与防护学报, 2014, 34(3): 199-210.