Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 905-915     CSTR: 32134.14.1005.4537.2024.232      DOI: 10.11902/1005.4537.2024.232
  研究报告 本期目录 | 过刊浏览 |
Ti80合金与船用金属的电偶腐蚀行为研究
方焕杰1, 周鹏1,2,3(), 郁健浩1, 王永欣1(), 于波3, 蒲吉斌1
1 中国科学院宁波材料技术与工程研究所 海洋关键材料全国重点实验室 宁波 315201
2 六盘山实验室 银川 750000
3 南京林业大学机械电子工程学院 南京 210037
Galvanic Corrosion Behavior of Coupling Pairs of Ti80 Alloy with Various Marine Metallic Materials
FANG Huanjie1, ZHOU Peng1,2,3(), YU Jianhao1, WANG Yongxin1(), YU Bo3, PU Jibin1
1 State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2 Liupanshan Laboratory, Yinchuan 750000, China
3 College of Mechanical and Electronical Engineering, Nanjing Forestry University, Nanjing 210037, China
引用本文:

方焕杰, 周鹏, 郁健浩, 王永欣, 于波, 蒲吉斌. Ti80合金与船用金属的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 905-915.
Huanjie FANG, Peng ZHOU, Jianhao YU, Yongxin WANG, Bo YU, Jibin PU. Galvanic Corrosion Behavior of Coupling Pairs of Ti80 Alloy with Various Marine Metallic Materials[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 905-915.

全文: PDF(15435 KB)   HTML
摘要: 

通过开路电位、动电位极化曲线和电化学阻抗谱等电化学测试以及微观形貌分析,探究了Ti80合金与4种常见船用金属材料(921A钢、B10铜合金、6061铝合金和40Cr合金钢)在NaCl溶液中的电偶腐蚀行为。此外,通过失重实验量化了与Ti80偶接对于4种金属材料腐蚀速率的影响。结果表明:4种金属与Ti80偶接均会形成不同程度的电偶腐蚀效应。电偶腐蚀并未改变阳极金属的腐蚀机理,但两种金属之间存在的自腐蚀电位差导致电偶体系产生电子转移势能,引发阳极金属加速溶解。相较金属材料的自腐蚀,与Ti80偶接后4种金属材料腐蚀速率增长幅度大小排序为:6061 > 40Cr > 921A > B10,电偶效应并不与电位差呈正相关。

关键词 海洋环境Ti80合金船用金属电偶腐蚀腐蚀机理    
Abstract

Ti-alloy has widely used in the manufacture of advanced marine equipment. However, in practical applications, galvanic corrosion may tend to happen when Ti-alloy is coupled with dissimilar metallic materials, which significantly threatens the reliability and service lifetime of marine equipment. In present work, the galvanic corrosion behavior of coupling pairs of Ti80 alloy with four commonly-used metallic materials for marine engineering, such as 921A steel, B10 Cu-alloy, 6061 Al-alloy and 40Cr steel respectively, in NaCl solution was studied via weight change measurement, open circuit potential measurement, potentiodynamic polarization measurement and electrochemical impedance spectroscopy as well as 3D optical profilometer, Fe-SEM and XRD. It is found that galvanic corrosion may occur when Ti80 alloy is coupled with any one of the four metallic materials, while the galvanic corrosion does not alter the corrosion behavior of the anode material for the four pairs. Even though, the difference of free-corrosion potentials between the two metallic materials of the coupling pair will play the role as driving force for electron transfer of the coupling system, which may lead to the accelerated dissolution of the metallic material acted as the anode. By taking the free-corrosion rate of the four test metallic materials as reference, after being coupled with Ti80 alloy the increment in corrosion rate of the four metallic materials can be ranked as follows: 6061 > 40Cr > 921A > B10. Besides, it is noted that there is not positively correlation between the galvanic corrosion effect with the potential difference of the coupling pairs.

Key wordsmarine environment    Ti80 alloy    marine metal    galvanic corrosion    corrosion mechanism
收稿日期: 2024-07-30      32134.14.1005.4537.2024.232
ZTFLH:  TG172  
基金资助:宁波科技创新2025重大专项(2022Z185);宁波市自然科学基金(2023J328);六盘山实验室基础科研项目(LPS-2024-KY-D-JC-0019);六盘山实验室基础科研项目(LPS-2024-KY-D-JC-0018)
通讯作者: 王永欣,E-mail:yxwang@nimte.ac.cn,研究方向为金属材料腐蚀与防护;
周鹏,E-mail:zhoupengnifu@163.com,研究方向为金属材料腐蚀与防护
Corresponding author: WANG Yongxin, E-mail: yxwang@nimte.ac.cn;
ZHOU Peng, E-mail: zhoupengnifu@163.com
作者简介: 方焕杰,男,1995年生,助理研究员
图1  电化学实验装置实验图
图2  常温常压条件下5种合金在3.5%NaCl溶液中的开路电位
图3  921A、B10、6061和40Cr与Ti80偶接前后的动电位极化曲线
SampleEcorr / VIcorr / A·cm-2βa / V·dec-1βc / V·dec-1
921A-0.6194.796 × 10-60.0240.806
921A/Ti80-0.6318.582 × 10-60.1380.250
B10-0.2782.847 × 10-60.6570.056
B10/Ti80-0.2812.887 × 10-60.7140.058
6061-1.2593.663 × 10-40.6340.161
6061/Ti80-1.3326.897 × 10-40.8800.196
40Cr-0.4741.307 × 10-60.0860.385
40Cr/Ti80-0.5889.894 × 10-60.8060.093
表1  921A、B10、6061和40Cr与Ti80偶接前后的电化学参数
图4  921A、B10、6061和40Cr与Ti80偶接前后的电化学阻抗谱
图5  B10和其他金属材料的等效电路图
SampleRs / Ω·cm2CPE1 / μF·cm-2n1Rf / Ω·cm2CPE2 / μF·cm-2n2Rct / Ω·cm2W / Ω-1·s1/2
921A9.9476.485 × 10-40.760916.992.590 × 10-40.84474.471 × 103-
921A/Ti808.9981.652 × 10-30.84662.610 × 1039.897 × 10-40.71222.355 × 102-
B108.8478.330 × 10-41.00004.920 × 1041.894 × 10-50.90031.787 × 1041.761 × 10-5
B10/Ti806.7149.846 × 10-50.87099.242 × 1034.785 × 10-50.87133.752 × 103-
60612.5723.381 × 10-50.93262.174 × 1032.596 × 10-30.70653.196 × 102-
6061/Ti803.5618.399 × 10-50.83763.368 × 1035.552 × 10-50.90312.959 × 102-
40Cr8.3342.582 × 10-31.00001.766 × 1021.000 × 10-30.78582.406 × 103-
40Cr/Ti8012.0501.273 × 10-30.75932.130 × 1031.681 × 10-30.98874.001 × 102-
表2  921A、B10、6061和40Cr与Ti80偶接前后的EIS拟合数据
图6  921A和921A/Ti80样品在3.5%NaCl溶液中全浸泡16 d后的表面形貌和三维形貌
图7  921A和921A/Ti80在3.5%NaCl溶液中全浸泡16 d后的XRD图谱
图8  B10和B10/Ti80样品在3.5%NaCl溶液中全浸泡16 d后的表面形貌和三维形貌
图9  B10和B10/Ti80在3.5%NaCl溶液中全浸泡16 d后的XRD图谱
图10  6061和6061/Ti80样品在3.5%NaCl溶液中全浸泡16 d后的表面形貌和三维形貌
图11  6061和6061/Ti80在3.5%NaCl溶液中全浸泡16 d后的XRD图谱
图12  40Cr和40Cr/Ti80在3.5%NaCl溶液中全浸泡16 d后的XRD图谱
图13  40Cr和40Cr/Ti80样品在3.5%NaCl溶液中全浸泡16 d后的表面形貌和三维形貌
图14  921A、B10、6061和40Cr与Ti80偶接后在3.5%NaCl溶液中浸泡16 d后腐蚀速率变化
[1] Yang Y L, Luo Y Y, Zhao H Z, et al. Research and application status of titanium alloys for warships in China [J]. Rare Metal Mater. Eng., 2011, 40(suppl.2) : 538
[1] (杨英丽, 罗媛媛, 赵恒章 等. 我国舰船用钛合金研究应用现状 [J]. 稀有金属材料与工程, 2011, 40(): 538)
[2] Yan S K, Song G L, Li Z X, et al. A state-of-the-art review on passivation and biofouling of Ti and its alloys in marine environments [J]. J. Mater. Sci. Technol., 2018, 34: 421
doi: 10.1016/j.jmst.2017.11.021
[3] Zhao Y Q. The new main titanium alloys used for shipbuilding developed in China and their applications [J]. Mater. China, 2014, 33: 398
[3] (赵永庆. 我国创新研制的主要船用钛合金及其应用 [J]. 中国材料进展, 2014, 33: 398)
[4] Yang X D, Wu X F, Yin X H, et al. Study on galvanic corrosion behavior of aluminum bronze/Ti80 alloy/2205 stainless steel in seawater [J]. Dev. Appl. Mater., 2019, 34(2): 28
[4] (杨学东, 吴晓飞, 尹晓辉 等. 铝青铜/Ti80合金/2205不锈钢在海水中电偶腐蚀行为研究 [J]. 材料开发与应用, 2019, 34(2): 28)
[5] Dong K H, Song Y W, Chang F C, et al. Galvanic corrosion mechanism of Ti-Al coupling: the impact of passive films on the coupling effect [J]. Electrochim. Acta, 2023, 462: 142662
[6] Lei B, Hu S N, Lu Y F, et al. Galvanic corrosion behavior and electric insulation between B10 and a high strength steel in seawater environment for warship [J]. Corros. Prot., 2019, 40: 497
[6] (雷 冰, 胡胜楠, 卢云飞 等. 海水环境中B10合金与高强钢的电偶腐蚀行为与电绝缘防护技术 [J]. 腐蚀与防护, 2019, 40: 497)
[7] Chen X W, Wu J H, Wang J, et al. Progress in research on factors influencing galvanic corrosion behavior [J]. Corros. Sci. Prot. Technol., 2010, 22: 363
[7] (陈兴伟, 吴建华, 王 佳 等. 电偶腐蚀影响因素研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 363)
[8] Al-Hossani H I, Saber T M H, Mohammed R A, et al. Galvanic corrosion of copper-base alloys in contact with molybdenum-containing stainless steels in Arabian gulf water [J]. Desalination, 1997, 109: 25
[9] Kamble P A, Deshpande P P, Vagge S T. Numerical investigation of galvanic corrosion between galvanized steel and mild steel in bolted joint [J]. Mater. Today Proc., 2022, 50: 1923
[10] Blasco-Tamarit E, Igual-Muñoz A, García Antón J G. Effect of temperature on the galvanic corrosion of a high alloyed austenitic stainless steel in its welded and non-welded condition in LiBr solutions [J]. Corros. Sci., 2007, 49: 4472
[11] Hasan B O. Galvanic corrosion of carbon steel-brass couple in chloride containing water and the effect of different parameters [J]. J. Petrol. Sci. Eng., 2014, 124: 137
[12] Li Q C, Yang J, Wu L, et al. Influence of pressure on galvanic corrosion of 907/921/B10 couples in simulated deep-sea environment [J]. Int. J. Electrochem. Sci., 2016, 11: 6443
[13] Xie W C, Li J S, Li Y L. Electrochemical corrosion behavior of carbon steel and hot dip galvanized steel in simulated concrete solution with different pH values [J]. Mater. Sci., 2017, 23: 280
[14] Donatus U, Thompson G E, Zhou X R. Effect of near-ambient temperature changes on the galvanic corrosion of an AA2024-T3 and mild steel couple [J]. J. Electrochem. Soc., 2015, 162: C42
[15] Guo R, Yang P, Mao F X, et al. Electrochemical noise studies on complex galvanic corrosion of submarine cable armor layer in artificial seawater [J]. Mater. Corros., 2022, 73: 379
[16] Yu B, Zhou P, Fang H J, et al. Effects of the TiO2 content on the mechanical properties and galvanic corrosion resistance of Al2O3 coatings [J]. Ceram. Int., 2023, 49: 38593
[17] Qiu J, Wu A J, Li Y H, et al. Galvanic corrosion of Type 316L stainless steel and Graphite in molten fluoride salt [J]. Corros. Sci., 2020, 170: 108677
[18] Zhao L H, Wang Y Q, Liu Y H, et al. Corrosion behavior of four steels for landing gear of amphibious aircraft in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1263
[18] (赵连红, 王英芹, 刘元海 等. 四种飞机起落架用钢在模拟海水中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1263)
doi: 10.11902/1005.4537.2023.373
[19] Wang M X. Reaserch on galvanic corrosion mechanics of stirrups in concrete structure [D]. Nanning: Guangxi University, 2008
[19] (王明星. 混凝土结构中箍筋的电偶腐蚀机理研究 [D]. 南宁: 广西大学, 2008)
[20] Qiao Y X, Zheng Y G, Ke W, et al. Electrochemical behaviour of high nitrogen stainless steel in acidic solutions [J]. Corros. Sci., 2009, 51: 979
[21] Feng X T, Lei J B, Gu H, et al. Effect of scanning speeds on electrochemical corrosion resistance of laser cladding TC4 alloy [J]. Chin. Phys., 2019, 28B: 026802
[22] Xie H. Research on the galvanic corrosion behavior of marine titanium alloy and other metals and application of protective coating technology [D]. Beijing: Beijing University of Chemical Technology, 2023
[22] (解 辉. 船用钛合金与其它金属电偶腐蚀行为及其防护涂层技术应用研究 [D]. 北京: 北京化工大学, 2023)
[23] Pyun S I, Moon S M, Ahn S H, et al. Effects of Cl-, NO 3 - and SO 4 2 - ions on anodic dissolution of pure aluminum in alkaline solution [J]. Corros. Sci., 1999, 41: 653
[24] Marcus P, Maurice V, Strehblow H H. Localized corrosion (pitting): a model of passivity breakdown including the role of the oxide layer nanostructure [J]. Corros. Sci., 2008, 50: 2698
[25] Sun B, Ye T Y, Feng Q, et al. Accelerated degradation test and predictive failure analysis of B10 copper-nickel alloy under marine environmental conditions [J]. Materials (Basel), 2015, 8: 6029
[26] Ismail K M, Fathi A M, Badawy W A. Electrochemical behavior of copper-nickel alloys in acidic chloride solutions [J]. Corros. Sci., 2006, 48: 1912
[27] Badawy W A, Ismail K M, Fathi A M. Effect of Ni content on the corrosion behavior of Cu-Ni alloys in neutral chloride solutions [J]. Electrochim. Acta, 2005, 50: 3603
[28] Campbell S A, Radford G J W, Tuck C D S, et al. Corrosion and galvanic compatibility studies of a high-strength copper-nickel alloy [J]. Corrosion, 2002, 58: 57
[1] 丁智超, 张树国, 肖晓春, 汪迪, 李文杰, 姜丽红. 半固态7075铝合金搅拌摩擦焊接头晶间腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1089-1097.
[2] 柳森, 胡家元, 温小涵, 朱仁政, 李延伟, 杨小佳. 典型沿海地区五种电网材料在大气环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1107-1116.
[3] 魏然, 蒋全通, 孙琛, 王伟伟, 段继周, 侯保荣. 镁合金在海洋环境中的腐蚀与防护研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 533-547.
[4] 宋晓稳, 白苗苗, 陈娜娜, 高逸晖, 冯亚丽, 刘倩倩, 张尧尧, 卢琳, 吴俊升, 肖葵. 海南滨海大气环境中棘孢曲霉对铝合金腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(3): 631-642.
[5] 刘家兵, 黄诗雨, 郭娜, 郭章伟, 刘涛. 船舶EH40钢在低温和常温海水中的腐蚀机理研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 620-630.
[6] 王宇晗, 李俊, 刘恒维, 许楠, 刘杰, 陈旭. 海洋环境中金属材料微生物腐蚀研究进展[J]. 中国腐蚀与防护学报, 2025, 45(3): 577-588.
[7] 苏志诚, 张弦, 程焱, 刘静, 吴开明. 同成分的超细贝氏体钢和Q&P钢在海水中应力腐蚀开裂行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[8] 庞洁, 刘相局, 刘娜珍, 侯保荣. T2铜合金和Q235钢在模拟北山地下水环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1435-1442.
[9] 尹洁, 高永浩, 易芳. Ag微合金化对Mg-Zn-Ca合金微观组织及腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1274-1284.
[10] 张炬焕, 刘静, 彭晶晶, 张弦, 吴开明. Al-Zn-In系牺牲阳极在模拟海洋环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1223-1233.
[11] 吕晓明, 王震宇, 韩恩厚. 纳米改性环氧隔热涂层的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1234-1242.
[12] 冯少宇, 周兆辉, 杨兰兰, 乔岩欣, 王金龙, 王福会. 海洋环境下TC4合金的电化学及磨损行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1243-1254.
[13] 赵骞, 张洁, 毛锐锐, 缪春辉, 卞亚飞, 滕越, 汤文明. Q235钢结构件表面热镀锌层的应力腐蚀及其机理[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[14] 乔泽, 李清泉, 刘晓航, 李燚周. 中性氯化钠溶液中硝酸根和电偶对7075-T651铝合金缝隙腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[15] 巫海亮, 陈宇强, 黄亮, 顾宏宇, 孙宏博, 刘佳俊, 王乃光, 宋宇峰. 高铁散热器用3003铝合金焊接隔板的腐蚀机理研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1081-1088.