|
|
Ti80合金与船用金属的电偶腐蚀行为研究 |
方焕杰1, 周鹏1,2,3( ), 郁健浩1, 王永欣1( ), 于波3, 蒲吉斌1 |
1 中国科学院宁波材料技术与工程研究所 海洋关键材料全国重点实验室 宁波 315201 2 六盘山实验室 银川 750000 3 南京林业大学机械电子工程学院 南京 210037 |
|
Galvanic Corrosion Behavior of Coupling Pairs of Ti80 Alloy with Various Marine Metallic Materials |
FANG Huanjie1, ZHOU Peng1,2,3( ), YU Jianhao1, WANG Yongxin1( ), YU Bo3, PU Jibin1 |
1 State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China 2 Liupanshan Laboratory, Yinchuan 750000, China 3 College of Mechanical and Electronical Engineering, Nanjing Forestry University, Nanjing 210037, China |
引用本文:
方焕杰, 周鹏, 郁健浩, 王永欣, 于波, 蒲吉斌. Ti80合金与船用金属的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 905-915.
Huanjie FANG,
Peng ZHOU,
Jianhao YU,
Yongxin WANG,
Bo YU,
Jibin PU.
Galvanic Corrosion Behavior of Coupling Pairs of Ti80 Alloy with Various Marine Metallic Materials[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 905-915.
[1] |
Yang Y L, Luo Y Y, Zhao H Z, et al. Research and application status of titanium alloys for warships in China [J]. Rare Metal Mater. Eng., 2011, 40(suppl.2) : 538
|
[1] |
(杨英丽, 罗媛媛, 赵恒章 等. 我国舰船用钛合金研究应用现状 [J]. 稀有金属材料与工程, 2011, 40(): 538)
|
[2] |
Yan S K, Song G L, Li Z X, et al. A state-of-the-art review on passivation and biofouling of Ti and its alloys in marine environments [J]. J. Mater. Sci. Technol., 2018, 34: 421
doi: 10.1016/j.jmst.2017.11.021
|
[3] |
Zhao Y Q. The new main titanium alloys used for shipbuilding developed in China and their applications [J]. Mater. China, 2014, 33: 398
|
[3] |
(赵永庆. 我国创新研制的主要船用钛合金及其应用 [J]. 中国材料进展, 2014, 33: 398)
|
[4] |
Yang X D, Wu X F, Yin X H, et al. Study on galvanic corrosion behavior of aluminum bronze/Ti80 alloy/2205 stainless steel in seawater [J]. Dev. Appl. Mater., 2019, 34(2): 28
|
[4] |
(杨学东, 吴晓飞, 尹晓辉 等. 铝青铜/Ti80合金/2205不锈钢在海水中电偶腐蚀行为研究 [J]. 材料开发与应用, 2019, 34(2): 28)
|
[5] |
Dong K H, Song Y W, Chang F C, et al. Galvanic corrosion mechanism of Ti-Al coupling: the impact of passive films on the coupling effect [J]. Electrochim. Acta, 2023, 462: 142662
|
[6] |
Lei B, Hu S N, Lu Y F, et al. Galvanic corrosion behavior and electric insulation between B10 and a high strength steel in seawater environment for warship [J]. Corros. Prot., 2019, 40: 497
|
[6] |
(雷 冰, 胡胜楠, 卢云飞 等. 海水环境中B10合金与高强钢的电偶腐蚀行为与电绝缘防护技术 [J]. 腐蚀与防护, 2019, 40: 497)
|
[7] |
Chen X W, Wu J H, Wang J, et al. Progress in research on factors influencing galvanic corrosion behavior [J]. Corros. Sci. Prot. Technol., 2010, 22: 363
|
[7] |
(陈兴伟, 吴建华, 王 佳 等. 电偶腐蚀影响因素研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 363)
|
[8] |
Al-Hossani H I, Saber T M H, Mohammed R A, et al. Galvanic corrosion of copper-base alloys in contact with molybdenum-containing stainless steels in Arabian gulf water [J]. Desalination, 1997, 109: 25
|
[9] |
Kamble P A, Deshpande P P, Vagge S T. Numerical investigation of galvanic corrosion between galvanized steel and mild steel in bolted joint [J]. Mater. Today Proc., 2022, 50: 1923
|
[10] |
Blasco-Tamarit E, Igual-Muñoz A, García Antón J G. Effect of temperature on the galvanic corrosion of a high alloyed austenitic stainless steel in its welded and non-welded condition in LiBr solutions [J]. Corros. Sci., 2007, 49: 4472
|
[11] |
Hasan B O. Galvanic corrosion of carbon steel-brass couple in chloride containing water and the effect of different parameters [J]. J. Petrol. Sci. Eng., 2014, 124: 137
|
[12] |
Li Q C, Yang J, Wu L, et al. Influence of pressure on galvanic corrosion of 907/921/B10 couples in simulated deep-sea environment [J]. Int. J. Electrochem. Sci., 2016, 11: 6443
|
[13] |
Xie W C, Li J S, Li Y L. Electrochemical corrosion behavior of carbon steel and hot dip galvanized steel in simulated concrete solution with different pH values [J]. Mater. Sci., 2017, 23: 280
|
[14] |
Donatus U, Thompson G E, Zhou X R. Effect of near-ambient temperature changes on the galvanic corrosion of an AA2024-T3 and mild steel couple [J]. J. Electrochem. Soc., 2015, 162: C42
|
[15] |
Guo R, Yang P, Mao F X, et al. Electrochemical noise studies on complex galvanic corrosion of submarine cable armor layer in artificial seawater [J]. Mater. Corros., 2022, 73: 379
|
[16] |
Yu B, Zhou P, Fang H J, et al. Effects of the TiO2 content on the mechanical properties and galvanic corrosion resistance of Al2O3 coatings [J]. Ceram. Int., 2023, 49: 38593
|
[17] |
Qiu J, Wu A J, Li Y H, et al. Galvanic corrosion of Type 316L stainless steel and Graphite in molten fluoride salt [J]. Corros. Sci., 2020, 170: 108677
|
[18] |
Zhao L H, Wang Y Q, Liu Y H, et al. Corrosion behavior of four steels for landing gear of amphibious aircraft in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1263
|
[18] |
(赵连红, 王英芹, 刘元海 等. 四种飞机起落架用钢在模拟海水中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1263)
doi: 10.11902/1005.4537.2023.373
|
[19] |
Wang M X. Reaserch on galvanic corrosion mechanics of stirrups in concrete structure [D]. Nanning: Guangxi University, 2008
|
[19] |
(王明星. 混凝土结构中箍筋的电偶腐蚀机理研究 [D]. 南宁: 广西大学, 2008)
|
[20] |
Qiao Y X, Zheng Y G, Ke W, et al. Electrochemical behaviour of high nitrogen stainless steel in acidic solutions [J]. Corros. Sci., 2009, 51: 979
|
[21] |
Feng X T, Lei J B, Gu H, et al. Effect of scanning speeds on electrochemical corrosion resistance of laser cladding TC4 alloy [J]. Chin. Phys., 2019, 28B: 026802
|
[22] |
Xie H. Research on the galvanic corrosion behavior of marine titanium alloy and other metals and application of protective coating technology [D]. Beijing: Beijing University of Chemical Technology, 2023
|
[22] |
(解 辉. 船用钛合金与其它金属电偶腐蚀行为及其防护涂层技术应用研究 [D]. 北京: 北京化工大学, 2023)
|
[23] |
Pyun S I, Moon S M, Ahn S H, et al. Effects of Cl-, NO 3 - and SO 4 2 - ions on anodic dissolution of pure aluminum in alkaline solution [J]. Corros. Sci., 1999, 41: 653
|
[24] |
Marcus P, Maurice V, Strehblow H H. Localized corrosion (pitting): a model of passivity breakdown including the role of the oxide layer nanostructure [J]. Corros. Sci., 2008, 50: 2698
|
[25] |
Sun B, Ye T Y, Feng Q, et al. Accelerated degradation test and predictive failure analysis of B10 copper-nickel alloy under marine environmental conditions [J]. Materials (Basel), 2015, 8: 6029
|
[26] |
Ismail K M, Fathi A M, Badawy W A. Electrochemical behavior of copper-nickel alloys in acidic chloride solutions [J]. Corros. Sci., 2006, 48: 1912
|
[27] |
Badawy W A, Ismail K M, Fathi A M. Effect of Ni content on the corrosion behavior of Cu-Ni alloys in neutral chloride solutions [J]. Electrochim. Acta, 2005, 50: 3603
|
[28] |
Campbell S A, Radford G J W, Tuck C D S, et al. Corrosion and galvanic compatibility studies of a high-strength copper-nickel alloy [J]. Corrosion, 2002, 58: 57
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|