Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (5): 639-645    DOI: 10.11902/1005.4537.2020.185
  研究报告 本期目录 | 过刊浏览 |
三种典型船舶螺旋桨用铜合金的空蚀行为对比研究
佟瑶1,2, 宋亓宁1,2(), 李慧琳2, 许楠2, 包晔峰2, 张根元2, 赵立娟2
1.河海大学 疏浚技术教育部工程研究中心 常州 213022
2.河海大学机电工程学院 常州 213022
A Comparative Assessment on Cavitation Erosion Behavior of Typical Copper Alloys Used for Ship Propeller
TONG Yao1,2, SONG Qining1,2(), LI Huilin2, XU Nan2, BAO Yefeng2, ZHANG Genyuan2, ZHAO Lijuan2
1.Engineering Research Center of Dredging Technology of Education, Hohai University, Changzhou 213022, China
2.College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China
全文: PDF(9005 KB)   HTML
摘要: 

采用超声振动空蚀设备、电化学工作站对锰黄铜、高锰铝青铜、镍铝青铜的空蚀失重规律、空蚀中的电化学过程、腐蚀-空蚀交互作用进行了测试分析,并采用扫描电镜对空蚀损伤形貌进行观察。结果表明,耐空蚀性能由高到低为:镍铝青铜、高锰铝青铜、锰黄铜。空蚀初期,镍铝青铜、高锰铝青铜的α相发生塑性变形,裂纹在α/κ相界处萌生。高锰铝青铜中β基体相发生解理开裂。锰黄铜α基体相发生严重塑性变形,空蚀损伤严重。空蚀使锰黄铜和高锰铝青铜的腐蚀电位正移,镍铝青铜的腐蚀电位发生负移,3种材料的腐蚀电流密度均提高了一个数量级。3种材料均是以力学损伤为主导的空蚀损伤机制,交互作用主要是由腐蚀促进空蚀所引起。

关键词 螺旋桨铜合金空蚀交互作用    
Abstract

The cavitation corrosion behavior of three typical copper alloys for making marine propeller, namely manganese-brass (Mn-brass), manganese-aluminum-bronze (MAB) and nickel-aluminum-bronze (NAB) in 3.5%NaCl solution were comparatively assessed. The cavitation erosion mass loss, electrochemical process, the synergy between cavitation erosion and corrosion, and the morphology of the eroded surface were characterized. The results showed that the cavitation erosion resistance of the three alloys may be ranked as flows: NAB>MAB>Mn-brass. After cavitation erosion for 5 h, the mass loss of Mn-brass was 3.07 and 4.06 times that of MAB and NAB, respectively. Under the action of cavitation erosion, the α phase of NAB and MAB underwent plastic deformation, meanwhile cracks first emerged at boundaries of α/κ phase. In addition, cleavage fracture occurred in the β matrix in MAB. However, for Mn-brass, severe plastic deformation and cleavage fracture cracking occurred in the α matrix, and the cavitation damage was much more serious. The electrochemical results showed that under the action of cavitation erosion the free corrosion potential of Mn-brass and MAB shifted to a more positively value, in the contrary, a negative value for NAB. Due to the action of cavitation erosion, the free corrosion current density increased by an order of magnitude for the three copper alloys. The assessment of cavitation erosion-corrosion synergy revealed that the cavitation erosion mechanism of the three materials was dominated by mechanical damage. The synergistic interaction of cavitation erosion-corrosion was mainly caused by cavitation erosion promoted by corrosion.

Key wordsship propeller    copper alloy    cavitation erosion    synergy
收稿日期: 2020-10-09     
ZTFLH:  TG174  
基金资助:中央高校基本科研业务费专项(B210202129);江苏省自然科学基金(BK20191161);国家自然科学基金(51601058)
通讯作者: 宋亓宁     E-mail: qnsong@hhu.edu.cn
Corresponding author: SONG Qining     E-mail: qnsong@hhu.edu.cn
作者简介: 佟瑶,女,1997年生,硕士生

引用本文:

佟瑶, 宋亓宁, 李慧琳, 许楠, 包晔峰, 张根元, 赵立娟. 三种典型船舶螺旋桨用铜合金的空蚀行为对比研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 639-645.
Yao TONG, Qining SONG, Huilin LI, Nan XU, Yefeng BAO, Genyuan ZHANG, Lijuan ZHAO. A Comparative Assessment on Cavitation Erosion Behavior of Typical Copper Alloys Used for Ship Propeller. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 639-645.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.185      或      https://www.jcscp.org/CN/Y2021/V41/I5/639

AlloyAlNiFeMnCu
Mn-brass<0.6---1.323.62Bal.
MAB7.282.103.6212.35Bal.
NAB9.304.504.880.97Bal.
表1  3种铜合金化学成分
图1  3种铜合金光学显微组织
图2  3种铜合金空蚀失重-时间曲线和空蚀失重率-时间曲线
图3  3种铜合金在静态-空蚀交替条件下的开路电位
图4  3种铜合金在静态及空蚀状态下的极化曲线
MaterialQuiescenceCavitation
Icorr / A·cm-2Ecorr / mVIcorr / A·cm-2Ecorr / mV
Mn-brass7.5637×10-6-416.05.0586×10-5-297.7
MAB8.1730×10-6-440.07.4390×10-5-336.3
NAB4.3689×10-6-260.02.9417×10-5-285.7
表2  3种铜合金在静态和空蚀状态下的腐蚀电流密度和腐蚀电位
MaterialMass loss rate / mg·cm-2·h-1Percentages / %
WTWCWEWEICWCIEWSfCfEfEICfCIEfS
Mn-brass4.41670.01803.44170.10270.85430.95700.4177.922.3319.3421.67
MAB1.43830.01951.22170.08140.11570.19711.3684.945.668.0413.70
NAB1.08830.01040.90000.05980.11810.17790.9582.705.4910.8616.35
表3  3种铜合金在3.5% NaCl溶液中腐蚀与空蚀交互作用分析结果
图5  3种铜合金在3.5%NaCl溶液中空蚀1和5 h后的表面形貌
1 Huang J T. Principle and Application of Cavitation and Cavitation Erosion [M]. Beijing: Tsinghua University Press, 1991: 3
1 黄继汤. 空化与空蚀的原理及应用 [M]. 北京: 清华大学出版社, 1991: 3
2 Chen D R. Cavitation and cavitation erosion [J]. China Basic Sci., 2010, 12(6): 3
2 陈大融. 空化与空蚀研究 [J]. 中国基础科学, 2010, 12(6): 3
3 Iqbal J, Hasan F, Ahmad F. Characterization of phases in an as-cast copper-manganese-aluminum alloy [J]. J. Mater. Sci. Technol., 2006, 22: 779
4 Tang C H, Cheng F T, Man H C. Improvement in cavitation erosion resistance of a copper-based propeller alloy by laser surface melting [J]. Surf. Coat. Technol., 2004, 182: 300
5 Cheng J. Domestic and international status of corrosion-resistant copper alloys [J]. Spec. Cast. Nonferrous Alloy, 1991, (4): 33
5 程骥. 耐蚀与防污铜合金的国内外现状 [J]. 特种铸造及有色合金, 1991, (4): 33
6 Lin C, Zhao X B, Zhang Y F. Research progress on cavitation-corrosion of metallic materials [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 11
6 林翠, 赵晓斌, 张翼飞. 金属材料的空化腐蚀行为及影响因素研究进展 [J]. 中国腐蚀与防护学报, 2016, 36: 11
7 Wang J, Tian W H, Zhao J Q, et al. A review of research development of cavitation erosion in hydraulic machinery [J]. J. Ship Mech., 2020, 24: 536
7 王健, 田文慧, 赵嘉卿等. 水力机械中的空蚀研究综述 [J]. 船舶力学, 2020, 24: 536
8 Trethewey K, Haley R. Effect of ultrasonically induced cavitation on corrosion behaviour of a copper-manganese-aluminium alloy [J]. Br. Corros. J., 2013, 23: 55
9 Hucińska J, Głowack M. Cavitation erosion of copper and copper-based alloys [J]. Metall. Mater. Trans., 2001, 32A: 1325
10 Suh N P, Saka N. The stacking fault energy and delamination wear of single-phase f.c.c. metals [J]. Wear, 1977, 44: 135
11 Zhang L M, Ma A L, Yu H, et al. Correlation of microstructure with cavitation erosion behaviour of a nickel-aluminum bronze in simulated seawater [J]. Tribol. Int., 2019, 136: 250
12 Zheng Y G, Yao Z M, Wei X Y, et al. The synergistic effect between erosion and corrosion in acidic slurry medium [J]. Wear, 1995, 186/187: 555
13 Luo S Z, Zheng Y G, Jing H M, et al. Effect of cavitation on electrochemical corrosion behavior of 20SiMn low alloy steel in 3%NaCl solution [J]. Corros. Sci. Prot. Technol., 2003, 15: 311
13 骆素珍, 郑玉贵, 敬和民等. 空蚀对20SiMn在3%NaCl溶液中的电化学腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2003, 15: 311
14 Chen J, Qin Z, Shoesmith D W. Kinetics of corrosion film growth on copper in neutral chloride solutions containing small concentrations of sulfide [J]. J. Electrochem. Soc., 2010, 157: C338
15 Song Q N, Tong Y, Xu N, et al. Synergistic effect between cavitation erosion and corrosion for various copper alloys in sulphide-containing 3.5%NaCl solutions [J]. Wear, 2020, 450/451: 203258
16 Kwok C T, Cheng F T, Man H C. Synergistic effect of cavitation erosion and corrosion of various engineering alloys in 3.5%NaCl solution [J]. Mater. Sci. Eng., 2000, 290A: 145
17 Song Q N, Xu N, Bao Y F, et al. Corrosion behavior of Cu40Zn in sulfide-polluted 3.5% NaCl solution [J]. J. Mater. Eng. Perform., 2017, 26: 4822
18 Song Q N, Zheng Y G, Jiang S L, et al. Comparison of corrosion and cavitation erosion behaviors between the as-cast and friction-stir-processed nickel aluminum bronze [J]. Corrosion, 2013, 69: 1111
19 Zheng Y G, Luo S Z, Ke W. Effect of passivity on electrochemical corrosion behavior of alloys during cavitation in aqueous solutions [J]. Wear, 2007, 262: 1308
20 Kong D C, Dong C F, Ni X Q, et al. Long-term polarisation and immersion for copper corrosion in high-level nuclear waste environment [J]. Mater. Corros., 2017, 68: 1070
21 Wharton J A, Barik R C, Kear G, et al. The corrosion of nickel-aluminium bronze in seawater [J]. Corros. Sci., 2005, 47: 3336
22 Ni D R, Xue P, Wang D, et al. Inhomogeneous microstructure and mechanical properties of friction stir processed NiAl bronze [J]. Mater. Sci. Eng., 2009, 524A: 119
23 Wood R J K. Marine wear and tribocorrosion [J]. Wear, 2017, 376/377: 893
24 Wharton J A, Stokes K R. The influence of nickel-aluminium bronze microstructure and crevice solution on the initiation of crevice corrosion [J]. Electrochim. Acta, 2008, 53: 2463
25 Kear G, Barker B D, Walsh F C. Electrochemical corrosion of unalloyed copper in chloride media-a critical review [J]. Corros. Sci., 2004, 46: 109
26 Song Q N, Xu N, Jiang X, et al. Effect of sulfide concentration on the corrosion and cavitation erosion behavior of a manganese-aluminum bronze in 3.5% NaCl solution [J]. J. Mater. Eng. Perform., 2019, 28: 4053
27 Basumatary J, Wood R J K. Synergistic effects of cavitation erosion and corrosion for nickel aluminium bronze with oxide film in 3.5%NaCl solution [J]. Wear, 2017, 376/377: 1286
[1] 胡宗武, 刘建国, 邢蕊, 尹法波. 单相流条件下90°水平弯管冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
[2] 余仁强,何建军,李微,任延杰,杨旺. 火电厂循环泵叶轮材料Cr30A在脱硫浆液腐蚀环境中的交互损伤失效行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 353-358.
[3] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[4] 王振华, 白杨, 马晓, 邢少华. 钛合金和铜合金管路电偶腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[5] 宋久龙, 陈文革, 雷楠楠. T2铜及QCr0.5铜合金无铬复配钼酸盐钝化研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 210-218.
[6] 李科, 翟晓凡, 管方, 钱洲亥, 张美霞, 段继周, 侯保荣. 船用螺旋桨防护技术及其材料研究进展[J]. 中国腐蚀与防护学报, 2017, 37(6): 495-503.
[7] 陶永奇,刘刚,黎业生,曾志翔. 海水环境下2024铝合金腐蚀磨损性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 587-594.
[8] 睢文杰,赵文杰,张星,秦立光,彭叔森,乌学东,薛群基. 铜合金表面巯基官能有机硅溶胶-凝胶涂层中TEOS含量对其防腐性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 52-58.
[9] 齐东梅, 成若义, 杜小青, 陈宇, 张昭, 张鉴清. Cu及其合金的大气腐蚀研究现状[J]. 中国腐蚀与防护学报, 2014, 34(5): 389-398.
[10] 陈君, 李全安, 张清, 王建章, 阎逢元. AISI 316不锈钢腐蚀磨损交互作用的研究[J]. 中国腐蚀与防护学报, 2014, 34(5): 433-438.
[11] 陈碧, 郑碧娟, 张帆, 刘宏芳. 静磁场下硫酸盐还原菌对HSn70-1铜合金的腐蚀行为[J]. 中国腐蚀与防护学报, 2014, 34(4): 339-345.
[12] 乔岩欣,刘飞华,任爱,姜胜利,郑玉贵. 高氮钢和321不锈钢的冲刷腐蚀行为[J]. 中国腐蚀与防护学报, 2012, 32(2): 141-145.
[13] 赵月红,林乐耘,王振海. 动态再结晶特征及其对黄铜腐蚀敏感性的影响[J]. 中国腐蚀与防护学报, 2012, 32(2): 102-108.
[14] 董泽华,何金杯,郭兴蓬,张耀享,汉继成. 环烷酸与有机硫对Cr5Mo钢高温腐蚀的交互作用研究[J]. 中国腐蚀与防护学报, 2011, 31(3): 219-224.
[15] 郝龙; 李锐; 江莉; 林安; 甘复兴 . 钨铜合金化学镀镍磷镀层在NaCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2008, 28(5): 307-310 .